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Secondary structure remains the most exploitable feature for non-coding RNA (ncRNA) gene finding in genomes. However, methods 

based on secondary structure prediction may generate superfluous amount of candidates for validation and have yet to deliver the 

desired performance that can complement experimental efforts in ncRNA gene finding. This paper investigates a novel method, 

unpaired structural entropy (USE) as a measurement for the structure fold stability of ncRNAs. USE proves to be effective in 

identifying from the genome background a class of ncRNAs, such as precursor microRNAs (pre-miRNAs) that contains a long stem 

hairpin loop. USE correlates well and performs better than other measures on pre-miRNAs, including the previously formulated 

structural entropy14.  As an SVM classifier, USE outperforms existing pre-miRNA classifiers.  A long stem hairpin loop is common for 

a number of other functional RNAs including introns splicing hairpins loops25 and intrinsic termination hairpin loops12.  We believe 

USE can be further applied in developing ab initio prediction programs for a larger class of ncRNAs. 
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1.   INTRODUCTION 

Non-coding RNAs (ncRNAs) carry out many critical 

functions in living cells
10

.  As more functional roles by 

ncRNAs are being discovered, there is a rapid growth of 

interest in developing bioinformatics methods that may 

effectively identify ncRNAs genes from genomic 

backgrounds. Unlike their protein coding counterparts, 

ncRNAs do not possess strong statistical signals (e.g., 

ORFs), making ncRNA identification a computational 

challenge. For example, programs based on relevant  

sequential features, such as base composition, are often 

limited to certain classes of organisms or specific 

families of ncRNAs
24

. On the other hand, most 

transcribed single-strand ncRNAs can potentially fold; 

their secondary structure remains to be the most 

exploitable feature for a truly successful ncRNA 

prediction methods. Indeed, such a potential has 

energized the use of some best secondary structure 

prediction methods for ncRNA finding
20,22,27

. 

Nonetheless, the prediction results have generated a 
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rather unclear picture; in particular,  RNAz
26

 and 

EvoFold1
20 

generated 30,000 and 48,000 predicted 

candidates, respectively, on the human and other 

vertebrate genomes; the overlap of these two sets of 

candidates is somewhat disappointingly small (7.2%)
27 

indicating questionable low  sensitivity (for at least one 

of the programs). In addition, the validation rates for the 

predicted structural RNAs are low, possibly attributed to 

high false-positive rates because of the rare low 

expression levels in known ncRNAs. 

       The underperformance of structure prediction based 

methods could be due to the fact that functional RNA 

may admit alternative structures and random sequences 

may be fold and be detected (e. g. 11 million hairpin 

loops were found within the human genome)
3
. This 

suggests that, in addition to the minimum free energy
5
, 

other rules governing secondary structure folding may 

be needed for effective ncRNA finding.  Fold stability 

may be one such characteristics as it would help 

understand the differentials between alternative folds of 

real ncRNAs and between folds of real ncRNAs and of 

random sequences. Based on the partition functions
19

 

that defines a thermodynamic energy ensemble of RNA 

secondary structures, the fold stability of a given RNA 

sequence can be measured with the Shannon's 

entropy
7,19, 23

 over various random variables that define 

base pairings of the sequence.  It turns out that some 

ncRNAs, typically precursor microRNAs (pre-miRNA), 

have entropy significantly lower than that of their 

randomly shuffled  counterparts, while others do not
8,14

. 

Independent studies on others measures, such as average 

free energy
4
, self-containment

16
, compactness

18
, and 

thermodynamic entropy
31

, appears to confirm that 

precursor miRNAs possess much higher fold stability 

than other kinds of ncRNAs and such structure 

characteristics may be exploited to discriminate 

miRNAs from the genome background. 

       The secondary structure requirement of primary 

miRNA and precursor miRNAs RNase III drosha and 

dicer processing consists of a long stem loop might have 

contributed to the significantly low fold stability 

entropy
17, 29

.  Since such a structural feature is shared by 

other functional RNAs such as snRNA, introns splicing 

hairpins loops and intrinsic termination hairpin 

loops
12,25

, it is of acute interest to develop structure 

stability based methods that can effectively detect such 

ncRNAs from genomes, especially given the recent 

discoveries of important roles played by miRNAs
1
. In 

this paper, we present some preliminary results toward 

developing an ab initio ncRNA prediction framework 

based on structure stability of long hairpin stem loops. 

We propose a novel objective function called Unpaired 

Structural Entropy (USE), which captures the structural 

variability for a given sequence.  The USE measure was 

found to be effective in distinguishing miRNAs from its 

genomic background as well as other ncRNAs.  Through 

the USE objective function, we were able to create a 

single feature classifier to distinguish miRNAs with a 

sensitivity of 85% and specificity of 90%, an 

improvement upon all existing multi-feature miRNA 

classifiers including the previously investigated 

structural entropy.  Finally, we included the USE along 

with existing RNA measurements to further improve the 

performance of an SVM classifier.   

2.   METHODS 

Although generally the minimal free energy is chosen as 

the predicted structure for a given RNA sequence, many 

alternative structures also exist.  The probability for 

each of these structures to occur can be calculated 

through the Boltzmann Partition Function
19

 and thus it is 

possible to calculate the liklihood for base pairings 

between nucleotides.  In this work, we introduce a novel 

method USE which measures the structure’s stability 

through computing the entropy of the non-pairing 

probabilities.   

2.1.   Structural Variation  

Here we consider structural variation to be the amount 

of potential possibilities into which a sequence may fold.  

Higher structural variation implies a higher number of 

potential foldings.  Figure 1 displays two different 

NUPACK
7
 RNA folds, Figure 1a shows a predicted 

folding for mir-32 while figure 1b shows the folding for 

a dinucleotide shuffled mir-32.  Although both of them 

possess a folded structure, the coloring scheme shows 

more confidence in the pairings for mir-32 than the 

shuffled sequence.   
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Fig. 1a  Structures predicted by NUPACK for pre-mir-32 

 
 

Fig. 1b  Structures predicted by NUPACK for dinucleotide shuffling 

of pre-mir-32 

 

2.2.   Base Pairing Probabilities 

RNA can exist in an ensemble of structures, and the 

distribution of these structures can be captured by a 

Boltzmann distribution.  The Boltzmann distribution can 

allow computation of the partition function (Z) for each 

substructure.  The Partition Function algorithm has been 

implemented by McCaskill
19

 and it calculates the base-

pairing probability distribution based on the free 

energies for each structure within the structural 

ensemble space Ω.  Let sα be a structure with free energy 

Gα. Assume that the molar gas constant R=8.31451Jmol
-

1
K

-1
, and the temperature T, then 
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The probability for each structure to occur is the 

following 
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The term δ
α

ij denotes the occurrence of pairing between 

nucleotides i and j in sα. Hence, the probability base 

pairing probabilityPij is as follows: 
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Where 
0i

p  corresponds to the non-pairing probability of 

nucleotide at position i: 
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N being the length of the sequence. 

2.3.   Unpaired Structural Entropy 

Shannon Entropy is one of the most fundamental and 

basic concepts in the field of Information theory; it 

measures the amount of uncertainty of values taken by a 

random variable.  It also measures the amount of 

diversity that exists within a set of quantities.  Here in 

this work, we propose Unpaired Structural Entropy 

(USE) which computes the entropy of the non-pairing 

probabilities of the nucleotides that are normalized 

across the sequence:  
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   . (6) 

       Previous attempts have been made to capture the 

structural variability of a sequence through the entropy 

of its base pairing probabilities.  Huynen et al.
14

 have 

defined the positional entropy (Q) as follows which has 

been traditionally used in previous research
8
: 
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The relationship between Q and USE is as follows:  
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       In Q(S), the entropy of pairing possibilities is 

calculated for each nucleotide.  These individual 

nucleotide entropies are then averaged across the 

sequence, making it a local computation of the 

variability.  To calculate USE, only the non-pairing 

probabilities of nucleotides are taken into consideration.  

These probabilities are normalized across the sequence 

before their entropy is calculated; therefore, unlike Q(S), 

USE(S) is a global computation of the structural 

entropy.  In this study, we will show that USE is more 

successful than Q as well as other structural features in 

capturing the stability of long stems structures, in 

particular pre-miRNAs. 

3.   RESULTS 

A number of tests and analyses were conducted to 

examine the capabilities of the USE feature in 

identifying structures with low variability.   (1) The USE 

score was studied and compared across different RNA 

families.  The USE score distribution for miRNAs were 

significantly lower than other RNA families.  (2) We 

then examined the USE score’s ability to distinguish 

miRNAs from their genomic background.  (3) Finally, 

the performance of the USE score as a classifying 

feature in distinguishing miRNA from pseudo-miRNA 

was assessed.  The USE score was shown to be highly 

effective in classifying miRNA from pseudo-miRNA. 

3.1.   USE Across RNA Families 

To investigate the utility of USE, we compared the 

entropy across different RNA families using the same 

sequences evaluated by Freyhult et al.
8
 USE quartile 

boxplot of different ncRNA families can be viewed from 

Figure 2a.  The USE score for miRNA was generally 

much lower than of the other RNA families.   The intron 

sequences possessed the next lowest entropy values, but 

the graph showed that roughly around 0.80 we have 

75% of the miRNA lower than this value and 75% of the 

intron sequences higher than this value.  The RNA 

family with the third lowest entropy value was the SRP, 

and the majority of the SRP sequences were above 0.80.  

In addition from Figure 2b, we included the Q 

calculation across different RNA families.  This feature 

also showed that miRNA tends to be lower than of the 

other RNA families; however, if we compared the two 

graphs, Q as an objective function cannot distinguish 

miRNA as well from the other families of ncRNA than 

that of the USE score. 

3.2.   Detecting pre-microRNAs 

We decided to explore the ability of the USE function to 

identify miRNA precursors by sliding a window across a 

sequence, then calculating a score within the window. 

The lengths of known precursor microRNAs (pre-

miRNA) in humans usually range from 70 to 100nt.  

Therefore, we evaluated the behavior of the USE score 

across different window-sizes and sequences 

surrounding the precursor miRNA.  Figure 3 shows the 

USE Score of Sliding Window Scan of 500nt upstream 

and downstream of a human miRNA (mir-30e) the 

actual window size was the same as the pre-miRNA.  

The graph indicated that the USE score has a 

 

 
 

Fig. 2a.  A box plot of USE.  Box and whisker plots displaying distribution of USE score through quartiles across various ncRNAs.   

From the graph, the low entropic feature calculation separates miRNA from the other ncRNAs. 149



        

distinguishing low entropy for the true miRNA in its real 

genome context. 

       Since the length of the pre-miRNA sequence was 

not always known, we performed sliding window scans 

of different length for each sequence containing the 

upstream and downstream of 721 pre-miRNAs.  To 

observe the behavior or USE on surrounding sequences 

of miRNA, we varied the window size by increasing and 

decreasing in increments of 5 nt and repeated the same 

process for all pre-miRNA sequences.  Figure 4 

presented the results of USE scores corresponding to 

different window lengths and positions, which were 

averaged across the 721 pre-miRNAs. We showed that 

for any length of window scan, the lowest average USE 

values always occurs at the position 0 which correspond 

to the exact location of the pre-miRNA within the 

genome.   

3.3.   USE Correlation with Other RNA 

measures on Human pre-miRNA  

We performed regression on six variables to evaluate 

the linear relationship between USE across various RNA 

measurements: Q, miR-CYK, Self Containment (SC), 

Length, Minimal Free Energy (MFE), and Structural 

Ensemble as shown in figure 5.   

       We used the Cocke-Younger Kasami(CYK) 

algorithm to develop an in house CYK program to 

perform microRNA gene finding called miR-CYK.  

CYK in general was used to find the maximum 

probability alignment of the CFG to the string.  

Therefore, by defining a Stochastic Context Free 

Grammar (SCFG) based on the human pre-miRNA 

structure feature, we used the miR-CYK to score the 

sequence based on how the predicted likeness of the 

miRNA structure.   

       Self Containment (SC) was shown to measure the 

tendency to retain their structure regardless of the 

neighboring upstream and downstream sequences.  This 

particular measurement was developed by Kim et al
16

.  

They took the query sequence and added additional 

sequences upstream and downstream, and used 

RNAFold to fold the sequence to examine the structure 

prior and after the additional sequences.  This was done 

repeatedly to obtain a statistic of the frequency for the 

structure to retain its shape.   

MFE and Ensemble Frequency calculation was based on 

RNAFold’s calculation
11

.  Previously Bonnet et al
4
. 

showed that miRNA compared to other ncRNA tends to 

have lower MFE, and this might be attributed to the 

stability of the folding.  Ensemble Frequency provided a 

score of the frequency of the specific structure to occur 

within the structural space.  

       Since we were interested in possibly using USE to 

perform pre-miRNA gene finding, we used the Human 

pre-miRNA as the sequence to make the comparison.  

Table 1 presented the correlation coefficient for these 

six measures.  USE was shown to be most closely 

related to Q, since USE and Q were inherently based on 

the same type of  idea.  MiR-CYK and SC both 

possessed decent correlation to USE while Length, 

MFE, and Ensemble Frequency possessed the weakest 

correlation with USE. 

 
Table 1.  Correlation Coefficient R2 between USE and other 

RNA Measures 

Measure Correlation with USE 

   Q 0.638 

SC 0.460 

miR-CYK Score 0.514 

              MFE 0.068 

     Length 0.164 

    Frequency in Ensemble 0.235 

 

 
 

Fig. 2b.  A box plot showing the Q distribution across various ncRNA.  We also observe that miRNA tends to have a lower entropy; however 

compared to USE, Q has a harder time distinguishing miRNAs from the other families of ncRNAs. 
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3.4.   Classifying Human pre-miRNA via 

USE  

We also evaluated the performance of the USE function 

as a classifier.  In order to do so, we used 721 Human 

miRNAs as the positive datasets and 8494 pseudo 

miRNA as the negative datasets.  The Human miRNA 

sequences were downloaded from miRbase
9
.  The 

negative set of pseudo-miRNAs, was obtained from Xue 

et al
28

 derived from a set of sequences with hairpin loops 

located within the coding region. 

       The ROC for various RNA objective function are 

plotted in figure 6.  We also included a Paired Structural 

Entropy (PSE).  The probability of each nucleotide to 

pair can be defined as (1 – Pi0), and PSE was the same 

entropy calculation as USE but calculated only on the 

paired nucleotide region.  Figure 6 showed that the 

entropy of the non-pairing probability has more  
 

 

 

 

 

Fig. 4.  Average USE value of all miRNAs: Any point on the graph 

corresponded to a specific window length and position and represents 

the USE score averaged across all 721 Human microRNA sequences. 

The labels on the sequence-position axis represented the relative 

upstream/downstream position from the location of the actual 

microRNA. The window-size axis represented the amount of 

increments/decrements of the window-length relative to the length of 

the actual miRNA. The lowest averaged USE values were aligned in 

position 0 for all window lengths. 

 

classification power than that of the pairing probability.  

A true positive was defined as a Human microRNA that 

was below the cutoff, and a false positive was defined as 

a Human microRNA that is above the cutoff.  A true 

negative was defined as a pseudo microRNA that was 

above the cutoff, and a false negative was defined as a 

pseudo microRNA that was below the cutoff.  The graph 

showed that USE, CYK, and SC’s performance was 

relatively similar.   
 

3.5.   Comparisons Across different 

microRNA Classifiers  

 

Most existing miRNA prediction programs rely on a 

machine learning algorithm trained with a variety of 

features in primary and secondary structure for 

classification.  To assess the power of USE Classifer, we 

compared its performance to four other SVM 

microRNA classifiers: TripletSVM
28

, Virgo
15

 

miRFinder
13

, and microPred
2
.  Triplet-SVM, an ab initio 

algorithm uses the local contiguous base-pairing 

structures as features for the SVM classification
28

.  

Virgo, a viral miRNA detector that was trained on 

human miRNA sequences
15

. miRFinder used the pre-

miRNA structural characteristic and structural mutation 

information for the classification
13

.  MicroPred 

attempted to improve the prediction through effective 

machine learning techniques
2
.  To allow a valid fair 

 

 
 

Fig. 3.  Sliding window scan of USE score across 500nt upstream and downstream of has-mir-30e with window size 93nt (the length of the mir-

30e sequence). 
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comparison, we used the 8494 pseudo-microRNA as the 

negative dataset.  This particular negative dataset was 

used in all of the programs.  Using a larger negative 

dataset satisfied a requirement of the miRNA gene 

finder that it not produce many false positives, one of 

the primary difficulties in miRNA detection.  To 

evaluate each program’s performance, we chose to use 

Sensitivity, Specificity, and the Mathews Correlation 

Coefficient which were calculated: 

 

Specificity = TN / (TN + FP) 

Sensitivity = TP / (TP + FN) 

 

     

( )

( )

T P T N F P F N
M C C

T P F P T P F N T N F P T N F N

  


      
 

Table 2 contained the sensitivities, specificities, and 

MCC for the above classifiers.  Two different cutoffs 

were chosen for the USE model, to demonstrate the 

diversity of the sensitivity and specificity over a range of 

cutoff values.  The USE model cutoff 1 was a rough 

estimation based on the comparison over the distribution 

of USE score between miRNA and different RNA 

families (See Figure 2a).  For cutoff 2, the threshold was 

more stringent than cutoff 1 in attempt to reduce the 

number of false positives.  The SVM USE Model 

corresponded to an SVM model that integrated USE 

score, SC, and CYK, and we trained the SVM using 

cross validation.  We saw that the MCC for such a 

classifier was significantly higher than other classifiers.   

Table 2.  Performance comparison across different miRNA 

gene finding models. 

 Sensitivity Specificity MCC 

SVM with USE Model 0.777 0.974 0.724 

 USE Model (Cutoff 1) 0.845 0.906 0.560 

USE Model (Cutoff 2) 0.760 0.950 0.620 

miRFinder 0.809 0.906 0.538 

Virgo 0.823 0.712 0.306 

triplet-SVM  0.739 0.914 0.510 

microPred 0.908 0.733 0.363 

 

 

 
 

Fig. 6.  ROC plot of for prediction of classifying miRNA through 

various RNA measurements USE, CYK, Q, MFE, and SC. 

4.   DISCUSSION AND CONCLUSION 

In this work, a novel objective function called USE is 

presented that utilizes the variability based on unpaired 

probabilities of nucleotides.  USE can be interpreted as 

a measurment of uncertainty for a nucleotide in a 

structure to be unpaired (i. e. bulge or loop).  

MicroRNAs generally possess a stereotypical long-stem 

structure making them relatively less flexible and more 

stable than other ncRNAs. Nucleotide sequence 

variations within microRNA was shown not to affect the 

drosha and dicer processing
6
.  In fact, the most 

important secondary structure determinants for miRNA 

were found to be greater than 16bp stem, lower number 

and reduced size of bulges and internal loops.
21, 29

.   

From this we can infer that structures with long stem, 

fewer bulges and shorter loop tend to be more stable.  

Figure 2 indicates that the USE score can be an 

acceptable criterion in distinguishing miRNA structures 

from other ncRNA families.  If we compare our miRNA 

USE score distribution to Q, USE can distinguish more 

miRNAs than Q, demonstrating the novelty and 

statistical power of the USE function.  
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       Although RNA families are characterized by their 

sequence and structure, this does not imply that size is 

preserved across the RNA family.  This is especially 

observable within pre-miRNAs of different length while 

having similar hairpin loop structures.  Therefore, it is 

important for a RNA-family detector to be robust 

against assumptions on the sequence length.  Here, the 

window scan of USE calculation is done for different 

window lengths in order to evaluate the USE window 

scan’s performance. Figure 3 shows that the USE score 

is less dependent of the window size (i. e. the length of 

the microRNA to be found), since the USE score is 

always the lowest at the miRNA position, regardless of 

the length of the sliding window. 

       Furthermore, Lee and Kim
16

 have demonstrated that 

miRNAs have a tendency to retain their structure 

regardless of the neighboring upstream and downstream 

sequences. Their finding indicates that the sequence 

containing the miRNA and additional upstream and 

downstream sequence has as relatively low structural 

variability as the original miRNA, and they have termed 

this phenomenon as self-containment (SC). The USE 

scores of microRNAs are also observed to have a similar 

behavior, since they tend to  stay relatively low even 

when upstream and/or downsream sequences are added 

to the actual microRNA. This suggests a high 

correlation between the USE Score and the SC index 

which can also be observed from figure 5. 

       Capturing structural features as well as other RNA 

measurements has always played a significant role in 

classifying different RNA sequences. The challenge is to 

select the features that are specific to a category of 

ncRNA.  The power of such features can be assessed 

through various machine learning techniques. As we 

have discussed earlier, the low structural variability of 

miRNAs distinguishes them from other families of 

ncRNAs as well as from their background. Table 2 is a 

comparison of the different miRNA classifiers, and our 

single feature USE classifier’s sensitivity, specificity, 

and MCC outperforms all existing SVM methods.  The 

two cutoffs of the USE classifier demonstrate that a 

higher specificity can be achieved without sacrificing 

the sensitivity.  Finally, the inclusion of USE with 

existing features results in an even better performance 

with a higher MCC value suggesting that a lot of 

information is contained in the USE structural feature.  

For our SVM method we purposely chose a high cutoff 

to have a stringent specificity, since this is the major 

difficulty in computational detection of miRNA.  

       In conclusion, microRNA molecules possess low 

structural variability compared to other families; USE 

successfully captures this low global variability, offering 

a substantial improvement to the current state of miRNA 

gene finding.  Since USE is able to better quantify the 

structural variability of a sequence of long stems and 

small bulges, we believe USE can be further applied to 

develop ab initio prediction programs for a larger class 

of ncRNAs, or be applied to study stem-loop structures 

within viral sequences.  A limitation of our study is its 

dependency on the NUPACK’s secondary structural 

model.  Looking to future applications, there is potential 

for the USE feature to be applied in the prediction and 

validation of various tertiary models by quantifying the 

structural variability of a sequence or be applied to the 

identification of miRNA gene targets.  The USE method 

seems to work well on the long stem loop of pre-

miRNAs but not on long stem loops of random 

sequences nor that of some other ncRNAs like 

snoRNAs. This could indicate some more intrinsic 

nature of ncRNAs that have yet to be discovered. Such a 

phenomenon offers an opportunity for future 

investigation on techniques for detecting other ncRNAs. 

 

 
 

Fig. 5.  Correlation plot of the USE score compared to Q, Self Containment Index, miR-CYK, Length, MFE, and Ensemble Frequency.  
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5.   AVAILABILITY 

A webserver inferface for computing USE is available at 

http://www.uga.edu/RNA-Informatics/?f=software&p 

=StructuralEntropy   

6.   ACKNOWLEDGMENTS 

We acknowledge, and are grateful for, funding by NIH 

BISTI R01GM072080-01A1grant and NIH ARRA 

Administrative Supplement to this grant.  We thank 

Bram Sebastian for suggesting the negative training 

dataset, Ying-Wai Li’s valuable discussion on the 

Entropy calculation, Joseph Robertson’s revision of the 

paper, and Eric Talevich’s comments on the paper. 

7.   REFERENCES 

1.     V. Ambros, "The functions of animal microRNAs," 

Nature, vol. 431, pp. 350-355, Sep 2004. 

2.     R. Batuwita and V. Palade, "microPred: effective        

classification of pre-miRNAs for human miRNA 

prediction," Bioinformatics, vol. 25, pp. 989- 995, 

2009. 

3.     I. Bentwich, et al., "Identification of hundreds of 

conserved and nonconserved human microRNAs,” 

 Nature Genetics, vol. 37, pp. 766-770, Jul 2005. 

4.     E. Bonnet, et al., "Evidence that microRNA 

precursors, unlike other non-coding RNAs, have 

 lower folding free energies than random 

sequences," Bioinformatics, vol. 20, pp. 2911-2917, 

2004 

5.     P. Clote, et al., "Structural RNA has lower folding 

energy than random RNA of the same dinucleotide 

frequency," Rna-a Publication of the Rna Society, 

vol. 11, pp. 578-591, 2005. 

6.     S. Diederichs and D. A. Haber, "Sequence 

variations of microRNAs in human cancer: 

Alterations in predicted secondary structure do not 

affect processing," Cancer Research, vol. 66, pp. 

6097-6104, 2006. 

7.     R. M. Dirks, et al., "Thermodynamic analysis of 

interacting nucleic acid strands," Siam Review, vol. 

49, pp. 65-88, 2007. 

8.     E. Freyhult, et al., "A comparison of RNA folding 

measures," Bmc Bioinformatics, vol. 6, 2005. 

9.     S. Griffiths-Jones, "MiRBase: The MicroRNA 

sequence database," Methods in Molecular Biology, 

pp. 129-138, 2006. 

10.     S. Griffiths-Jones, "Annotating noncoding RNA 

genes," Annual Review of Genomics and Human 

Genetics, vol. 8, pp. 279-298, 2007. 

11.     A. R. Gruber, et al., "The Vienna RNA Websuite," 

Nucleic Acids Research, vol. 36, pp. W70-W74, 

2008. 

12.     I. Gusarov and E. Nudler, "The mechanism of 

intrinsic transcription termination," Molecular Cell, 

vol. 3, pp. 495-504, 1999. 

13.     T. H. Huang, et al., "MiRFinder: an improved 

approach and software implementation for genome-

wide fast microRNA precursor scans," Bmc 

Bioinformatics, vol. 8, 2007. 

14.     M. Huynen, et al., "Assessing the reliability of 

RNA folding using statistical mechanics," Journal 

of Molecular Biology, vol. 267, pp. 1104-1112, 

1997. 

15.     S. Kumar, et al., "Prediction of viral microRNA 

precursors based on human microRNA precursor 

sequence and structural features," Virology Journal, 

vol. 6, 2009. 

16.     M. T. Lee and J. Kim, "Self Containment, a 

Property of Modular RNA Structures, Distinguishes 

microRNAs," PLoS Computational Biology, vol. 4, 

2008. 

17.     Y. Lee, et al., "The nuclear RNase III Drosha 

initiates microRNA processing," Nature, vol. 425, 

pp. 415-419, 2003. 

18.     S. N. K. Loong and S. K. Mishra, "Unique folding 

of precursor microRNAs: Quantitative evidence and 

implications for de novo identification," Rna-a 

Publication of the Rna Society, vol. 13, pp. 170-

187, 2007. 

19.     J. S. McCaskill, "The Equilibrium Partition-

Function and Base Pair Binding Probabilities for 

RNA Secondary Structure," Biopolymers, vol. 29, 

pp. 1105-1119, 1990. 

20.     J. S. Pedersen, et al., "Identification and 

classification of conserved RNA secondary 

structures in the human genome," PLoS 

Computational Biology, vol. 2, pp. 251-262, 2006. 

21.     W. Ritchie, et al., "RNA stem-loops: To be or not 

to be cleaved by RNAse III," Rna-a Publication of 

the Rna Society, vol. 13, pp. 457-462, 2007. 

22.     E. Rivas and S. R. Eddy, "Noncoding RNA gene 

detection using comparative sequence analysis," 

Bmc Bioinformatics, vol. 2, pp. 1-19, 2001. 

23.     C. E. Shannon, "The mathematical theory of 

communication," M D Computing, vol. 14, pp. 306-

317, 1997. 

24.     Schattner, P. "Computational gene-finding for 

noncoding RNAs", (2003) in Noncoding RNAs: 

Molecular Biology and Molecular Medicine, ed. 

Barciszewski and Erdmann, Kluwer 

Academic/Plenum Publishers. 

154



 

25.     N. A. Smith, et al., "Gene expression - Total 

silencing by intron-spliced hairpin RNAs," Nature, 

vol. 407, pp. 319-320, Sep 2000. 

26.     S. Washietl, et al., "Fast and reliable prediction of 

noncoding RNAs," Proceedings of the National 

Academy of Sciences of the United States of 

America, vol. 102, pp. 2454-2459, Feb 2005. 

27.     S. Washietl, et al., "Structured RNAs in the 

ENCODE selected regions of the human genome," 

Genome Research, vol. 17, pp. 852-864, 2007. 

28.     C. H. Xue, et al., "Classification of real and 

pseudo microRNA precursors using local structure-

sequence features and support vector machine," 

Bmc Bioinformatics, vol. 6, 2005. 

29.     Y. Zeng and B. R. Cullen, "Structural 

requirements for pre-microRNA binding and 

nuclear export by Exportin 5," Nucleic Acids 

Research, vol. 32, pp. 4776-4785, 2004. 

30.     Y. Zeng and B. R. Cullen, "Recognition and 

cleavage of primary MicroRNA transcripts," 

Methods in Molecular Biology, pp. 49-56, 2006. 

31.     M. Zuker. The entropy of the Boltzman 

distribution of RNA folding, Benasque Workshop 

on Computational Methods for RNA Analysis, 

Benasque, Spain. 2009. 

 

155


