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Motivation: We present in this paper an efficient algorithm to identify conserved regions from multiple protein

structures. The Critical Assessment of Techniques for Protein Structure Prediction 1 experience suggests that for a
given target sequence, threading methods usually generate several structures (called decoys or models) with conserved

regions similar to the native structure, and identification of conserved regions can help improve structure prediction
16. Thus, it is important to efficiently detect conserved regions without requirement of alignment information.

Results: Based on our previous work on approximating the bottleneck distance 11, we present in this paper an

O(m2n2 logn) time algorithm to identify the maximum conserved regions from m decoys, where n is the number of

amino acids per decoy.
To measure the quality of the identified conserved regions, we performed two experiments: the first one directly

compare the identified conserved regions against native structures; the other experiment serves as an indirect measure

of conserved regions; that is, it aims to investigate whether these conserved regions help improve protein structure
prediction.

Experimental results demonstrate that for 16 out of 25 TBM (template-based modeling) targets in CASP7, our

method can identify over 70% native-like regions and filter out over 90% of non-native-like regions, simultaneously.
The algorithm also performs well for 10 out of 12 FM (free modeling) targets in CASP7, where we obtain more than

half of native-like regions and filter out over 80% non-native-like regions.
Furthermore, we applied the identified conserved regions to improve fragment-assembly-based approaches to

protein structure prediction. We observed that for 10 out of 12 FM targets in CASP7, our method shows higher

accuracies than ROSETTA 22. In particular, by identifying conserved regions, TM-score 37 are improved significantly
from meaningless (< 0.4) to meaningful (> 0.4) on four targets. This experiment provides with an indirect evidence

of the performance of our algorithm to identify conserved regions.

1. Introduction

The methods to attack protein structure prediction

problem can be divided into three families: homol-

ogy modeling 20, 2, threading 35, 24, 31, and ab ini-

tio methods 15, 22. Homology modeling and thread-

ing methods usually generate accurate predictions

if query-template sequence identity is over 30% 18.

In contrast, ab initio methods were designed for the

case that significantly sequence similar templates are

unavailable. The most successful ab initio strategy

is fragment assembly 15, 22, where short structure

fragments are used to build a native-like structure.

Typically, an ab initio method consists of two steps:

predicting local structures for each 9-mer sequence

segment of the query sequence first, and then con-

structing a decoy by choosing building blocks from

these local structure candidates.

Identifying conserved regions can help reduce

the search space of the fragment-assembly-based ab

initio methods. For example, ROSETTA, a typi-

cal fragment-assembly-based method, has a search

space with a size of O(25n) since for each 9-

mer sequence segment, 25 local structures are pre-

dicted as candidates ( n is the sequence length).

However, analysis suggested that the possible con-

formation space can be approximated by O(1.6n)
21, 12, implying the possibility to reduce ROSETTA’s

search space. In fact, after identifying conserved

regions, ROSETTA’s search space can be signifi-

cantly narrowed down by sampling non-conserved re-

gions 16, 33.

In addition, identifying conserved regions from

a set of predicted decoys is also important to im-

prove protein structure prediction. For example, it

has been reported that though the decoys generated

by ab initio method are globally inaccurate, the con-

served regions shared by these decoys are usually

similar to the corresponding regions in the native

conformation 16. Similar observation were obtained
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for decoys generated by threading methods. Specifi-

cally, taking consensus decoy from threading results

was proved to be an efficient method to identify bet-

ter decoys. For example, 3D-Jury 38 employs two

scoring functions to measure the global quality of de-

coys; 3D-Shotgun 39 depends on pair-wise structural

alignment to detect conserved regions.

It should be noted that most of previous stud-

ies focused on the identification of conserved regions

with helps of alignment information. For example,

Julie et al. defined Core Blocks based on secondary

structure and residue conservation 9; Yamada et al.

proposed a method that utilizes alignments gener-

ated from distances of dihedral angles 32; Tatusov

et al. presented a method based on sequence align-

ment blocks 25; and Krishnan et al. applied wavelet

technique to identify conserved regions from multiple

alignments 10. All these alignment-based conserved

regions were designed to categorize proteins into fam-

ilies. Contrasted, in this paper, the conserved region

refers to the similar local structures shared by multi-

ple decoys, and we aim to identify conserved regions

without the requirement of alignment information.

In addition, we aim to identify conserved local re-

gions rather than consensus global structure as 3D-

Jury did. It should also be noted that the similarity

of conserved regions is measured by RMSD, which is

different from the application of frequent subgraphs

in structural motif finding 40.

The subject of this paper is to design an effi-

cient method to identify conserved regions without

requirement of alignment information. Specifically,

we first formulated conserved regions identification

problem as an optimization problem, i.e., Maximum

Conserved Region problem, and then proposed an

approximation algorithm to solve it.

To measure the quality of conserved regions,

we performed two experiments: the first experi-

ment directly compares the identified conserved re-

gions against native structures; the second experi-

ment serves as an indirect measure of the identi-

fied conserved regions by investigating whether these

conserved regions help improve protein structure pre-

diction.

Experimental results demonstrate that the iden-

tified conserved regions are similar to their counter-

part regions in the native structure, and can help

improve the quality of the final generated structures.

2. Methods

2.1. Problem Statement

Given m protein structure models (decoys) for a

protein of n residues, each model can be repre-

sented as n ordered three dimensional (3D) points

Pi = (pi,1, ..., pi,n), 1 ≤ i ≤ m, pi,j ∈ R3 (here we

use Cα atom to represent a residue). Let us denote

the decoy set as P = {P1, ..., Pm}. A fragment of a

structure Pi is a sequence of consecutive points, de-

noted as Pi[a, b] = (pi,a, pi,a+1, ..., pi,b). Given two

fragments Pi[a, b] and Pj [a, b], the distance between

them is defined as:

d(Pi[a, b], Pj [a, b]) = min
T

max
a≤k≤b

||pi,k − T (pj,k)||

where || • || denotes the Euclidean distance, and

T denotes a rigid transformation that includes a ro-

tation along with a translation. Here, we adopt bot-

tleneck distance 11 to measure the distance between

two structural fragments. Briefly, the distance be-

tween two fragments is defined as the maximum dis-

tance between corresponding points under the opti-

mal rigid transformation to superimpose them.

Given a decoy Pi ∈ P , the region Pi[a, b] is con-

served if it is shared by more than ωm decoys in the

corresponding regions, where ω is a constant with

0 < ω ≤ 1. Mathematically, given a distance thresh-

old θ, Pi[a, b] is conserved if we can find a subset

P ′ ⊂ P , |P ′| >= ωm, such that d(Pi[a, b], Pj [a, b]) ≤
θ,∀Pj ∈ P ′.

We say an interval [a, b] is a conserved region

if there exists at least one decoy Pi ∈ P such that

Pi[a, b] is conserved. Obviously, any sub-interval of

a conserved region is still a conserved region. A con-

served region is denoted as maximal conserved re-

gion if it cannot be extended any more. It is easy

to see that maximal conserved regions may overlap

but a maximal conserved region cannot contain any

other maximal conserved regions. We use maximum

conserved regions to refer to a series of conserved

regions that the total length of these regions is max-

imized. For the sake of simplicity, we denote the

region boundaries as L([a, b]) = a and R([a, b]) = b.

The problem of identifying maximum conserved
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regions can be defined as follows:

Maximum Conserved Region Problem.

Given distance threshold θ, consensus factor ω,

length threshold λ, and an integer k, the goal is to

identify k disjoint regions [a1, b1], [a2, b2] ... [ak, bk]

such that the total length of these regions is maxi-

mized, i.e.,

• [al, bl] is a conserved region shared by at

least ωm models, |bl − al| ≥ λ, 1 ≤ l ≤ k

• ∑k
l=1(bl − al + 1) is maximized.

In general, the distance threshold θ is small, say,

θ ≤ 2Å, while length threshold λ is a constant, say,

λ ≥ 9. Therefore, some structures might not con-

tain any conserved regions. We call these structures

random decoys. In our study, the consensus factor ω

is empirically set to be 0.1. The intuition is that if

given 1000 decoys, a region is called conserved if it

appears in over 100 decoys.

It should be noted that our problem is dif-

ferent from both the LCP (Largest Common

Point) problem 6 and the LWPS (Largest Well-

Predicted Subset) problem 19, 11. Both LCP

problem and LWPS problem apply the same trans-

formation between two point sets while we use differ-

ent transformations for different region. In addition,

the conserved regions are required to be consecutive.

2.2. Identifying Conserved Regions

The intuition of our algorithm is as follows: We first

identify all maximal conserved regions by using an

approximation algorithm to calculate the bottleneck

distance. Due to the property of maximal conserved

region, we can obtain a conserved region by sim-

ply extracting a sub-interval from any maximal con-

served region, which save efforts in the subsequent

steps. Next we use dynamic programming technique

to calculate the maximum length of conserved re-

gions in time O(m2n2 log n). In addition, we also

put forward some pruning rules to speed up in prac-

tice.

It has been proved that the bottleneck distance

between two structures can be computed in polyno-

mial time O(n7) 11. However, this algorithm is too

slow for the application of identifying conserved re-

gions. In our previous work 11, we have proposed

an approximation algorithm to tackle this problem.

Briefly speaking, we first proved the existence of the

approximation transformation, and then proposed a

construction approach by using the techniques of dis-

cretization and enumeration. Since the focus of this

paper is to identify conserved regions, the proofs of

the existence and construction of a rigid transforma-

tion are omitted. Please refer to 11 for strict proofs.

2.2.1. Approximating the Maximal

Conserved Regions

In this subsection, we propose a method to calculate

the maximal conserved regions by using the efficient

bottleneck distance approximation technique. Sup-

pose the decoy set is P , |P | = m, and Pi ∈ P is the

center structure. We aim to compute the distance

between Pi[a, b] and the corresponding regions of the

rest decoys to decide whether Pi[a, b] is conserved or

not. The above-mentioned approximation technique

enable us to judge whether a region [a, b] is conserved

or not in time O(m|b−a|) when a center structure is

given. Thus, by trying each structure as the center

structure, we can determine whether region [a, b] is

conserved or not in time O(m2|b− a|).
As mentioned in the previous section, maximal

conserved regions may overlap but no maximal con-

served region contains any other maximal conserved

regions. Therefore, there are at most O(n) maximal

conserved regions since there is at most one maximal

conserved region starting at i, 1 ≤ i < n. Thus, the

remaining difficulty is to determine the right end-

points of the maximal conserved regions.

We used a binary search to identify the end of

the maximal conserved region for each i, 1 ≤ i < n.

In total, we need O(n log n) searches to obtain the set

of maximal conserved regions. Therefore, the total

time to identify all the maximal conserved regions is

O(m2n2 log n).

2.2.2. Dynamic Programming Algorithm to

Compute Maximum Conserved

Regions

We assume λ = 1 in this subsection. Our approach

can be easily extended to the cases when λ 6= 1.

We use dynamic programming technique to find

the maximum length of disjoint conserved regions.
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The dynamic programming table has two dimen-

sions, denoted as M [i, l], 1 ≤ i ≤ n, 0 ≤ l ≤ k.

The entry M [i, l] records the maximum length of no

more than l conserved regions contained in the inter-

val [1, i], 1 ≤ l ≤ k. Let I denote the set of maximal

conserved regions. Then the table can be built by

the following recursive formulation.

M [i, l] = max
i,j∈I,I∈I
i−j>λ





M [j − 1, l − 1] + |i− j + 1|
M [i, l − 1]

M [i− 1, l]
(1)

Here, M [n, k] consists of kn entries, and each

entry can be computed in O(n2) time. Therefore,

this dynamic programming algorithm runs in O(kn3)

time. We can further improve the algorithm based

on the following observation.

Claim 2.1. For the maximum conserved re-

gions problem, there exists an optimal solution

I1, I2, · · · , IS, and for each Ii, 1 ≤ i ≤ S, we have

a maximal conserved region I ′i ∈ I such that R(Ii) =

R(I ′i).

Proof.

The proof is by contradiction. Suppose in an

optimal solution S there is a conserved region Ii
such that Ii is neither a maximal conserved region

nor shares the right endpoint with any maximal con-

served region. Ii should be covered by at least one

maximal conserved region since it is itself not a max-

imal conserved region.

We break the proof into two cases.

Case 1: R(Ii) = L(Ii+1)− 1

In this case, we can extend Ii by increasing R(Ii)

and shrink Ii+1 by increasing L(Ii+1) simultaneously.

This process is repeated until R(Ii) is equal to the

right endpoint of a maximal conserved region. It

is obvious that both Ii and Ii+1 are still conserved

regions in this process, and the new maximum con-

served regions length does not change.

Case 2: R(Ii) < L(Ii+1)− 1

In this case, we can extend Ii by increasing R(Ii)

until R(Ii) is equal to the right endpoint of a max-

imal conserved region. We can also set L(Ii+1) to

be R(Ii) + 1 if necessary. It is not difficult to see

that the new Ii is still conserved, and the conserved

regions length will increase. This contradicts the as-

sumption of maximum conserved regions. Thus our

claim holds.

This claim implies that for each entry in equa-

tion 1, we just need to check only maximal conserved

regions rather than all possible intervals. Therefore,

the running time of the dynamic programming algo-

rithm can be improved from O(kn3) to O(kn2), and

the whole conserved regions identification algorithm

runs in O(m2n2 log n+ kn2) time.

2.2.3. Speed-up Technique

An O(m2n2 log n + kn2) time algorithm is still too

slow for practical applications; therefore, we propose

the following pruning rules to speed up:

• Before identifying maximal conserved re-

gions, we evaluate all the regions of length λ

first, and then decide whether it is necessary

to search for longer intervals or not. The rea-

son is that if [a, b] is a conserved region, all

of its sub-intervals are still conserved; oth-

erwise, none of its super-intervals is a con-

served region.

• We used RMSD (Root Mean Square Dis-

tance) 3 to filter out the non-conserved re-

gions based on the fact thatRMSD(A,B) ≤
d(A,B) 11. We can further skip some RMSD

calculations by using the triangular inequal-

ity of RMSD.

Generally speaking, the calculation of

RMSD is faster than that of bottleneck dis-

tance; hence these pruning rules can make

our algorithm much faster in practice.

3. Results and Discussions

To evaluate our algorithm, we conducted two experi-

ments: The first experiment aims to directly measure

the quality of identified conserved regions, i.e., the

similarity between the identified conserved regions

and the corresponding parts of the native structure;

the second experiment serves as an indirect measure;

that is, it aims to investigate whether or not the iden-

tification of conserved regions can help improve pro-

tein structure prediction from threading results.

207



3.1. Evaluation of Conserved Region
Quality

Due to the dependency on alignment information of

the previous studies 9, 25, 10, 32, it is unfair to com-

pare our method with these methods directly. We

either cannot make direct comparison with 3D-Jury

since 3D-Jury reports a consensus global structure

rather than conserved regions. Here, we performed

comparison of conserved regions against native struc-

ture directly. In particular, we calculate the distance

between these regions and the corresponding regions

in the native structure.

Notice that it is also unfair to use the same

distance criteria for conserved regions with variable

lengths. To overcome this difficulty, we adopted the

following criteria: we cut the conserved regions into

fragments with k residues, and investigated the qual-

ity of these k-mer fragments. A fragment is called

native-like if its distance from the corresponding na-

tive region is less than a threshold θ. This provides a

fair way to compare the quality of conserved regions

with variable length. In our experiments, we focused

on 10-mer fragments, and set the threshold θ to be

2Å.

We selected 37 hard CASP7 targets with less

than 200 amino acids. The targets are listed in Ta-

ble 1 and 1. Specifically, among these 37 targets,

25 are considered as template based modeling tar-

gets (TBM), and 12 are considered as free modeling

(FM) targets. For each target, we first run two kinds

of threading methods, HHpred 24 and SP3 35, and

obtained 10 decoys with each method. Next we used

our method to identify conserved regions from these

models, cut these conserved regions into k-mer frag-

ments, and calculated the distance between k-mer

fragments and their corresponding native regions.

The performance of conserved fragments for the

25 TBM targets is shown in Table 1. In this table,

the sensitivity column describes how many native-

like regions we can detect and the specificity column

describes how many non-native-like regions we can

filter out. This table suggests that for 16 out of the

25 template based targets, about 70% of native-like

regions are identified as conserved regions, and over

90% of non-native-like regions are filtered out. In

general, for all of these targets, we can filter out over

80% regions that are significantly different from the

native structures.

We also notice that for 4 targets, i.e., T0306,

T0342, T0358 and T0383, the sensitivities are below

36%. By investigating the input decoys carefully, we

identified two reasons: First, the TMscore of these

decoys are less than 0.2, which means a low accu-

racy for these decoys. Generally speaking, a decoy

with a TMscore less than 0.17 can be treated as a

random prediction 37. It is difficult to identify con-

served regions from these nearly random predictions.

Second, the effective of our methods will decrease

significantly if few templates are correct and the ma-

jority have same errors.

In summary, the experimental results demon-

strate that when the native-like regions occupy more

than 20% positions of the input decoys, we can iden-

tify most of the native-like regions correctly and ex-

clude most of the non-native-like regions for TBM

targets.

We also obtained similar observations on the 12

free-modeling targets. As shown in Table 1, more

than half native-like regions can be detected for 10

out of 12 targets, and over 80% of non-native-like

regions can be excluded. These observations suggest

that our method can help distinguish native-like re-

gions from non-native-like regions.

3.2. Applying Conserved Regions to
Improve Protein Structure
Prediction

An alternative and indirect way to evaluate our al-

gorithm is to investigate whether or not the iden-

tified conserved regions help improve protein struc-

ture prediction. Specifically, if our algorithm can

filter out non-native-like regions, then protein struc-

ture prediction can be improved by applying the

conserved regions technique iteratively. In brief, we

identify conserved regions from decoys first, then we

can make use of these partial “good” sub-structures

by running ROSETTA with these sub-structures un-

changed. In other words, we focus on the non-native

regions only and thus narrow down the search space.

By employing iteration strategy, we can obtain more

and more good partial “good” sub-structures until

convergence. Therefore, the quality of the conver-

gence decoys is a good indirect measure of our algo-

rithm.

208



The iterative idea was initiated at 12, where the

distribution of torsion angles can be estimated more

and more accurately as the iteration proceeds. Here,

we attempt to employ this framework to evaluate our

conserved regions algorithm.

Table 1. Performance of Conserved Fragments for 25 CASP7

Template-based-modeling(TBM) Targets and 12 Free-model-

ing(FM) Targets. TP: the number of true positive; FN: the num-
ber of false negative; FP: the number of false positive; TN: the

number of true negative; SEN: Sensitivity; SPE: Specificity.

Type Target TP FN FP TN SEN SPE

TBM T0283 294 107 80 1044 0.73 0.92

T0306 19 43 32 721 0.30 0.95

T0312 170 152 67 751 0.52 0.91
T0322 596 198 79 350 0.75 0.81

T0327 298 44 22 527 0.87 0.95

T0331 316 111 47 525 0.74 0.91
T0335 208 29 15 295 0.87 0.95

T0342 58 127 14 958 0.31 0.98
T0349 269 101 9 494 0.72 0.98

T0351 85 33 35 445 0.72 0.92

T0354 225 77 44 610 0.74 0.93
T0357 246 194 184 1064 0.56 0.85

T0358 62 108 68 544 0.36 0.88

T0360 263 165 119 562 0.61 0.82
T0362 1066 172 11 326 0.86 0.96

T0363 222 187 62 618 0.54 0.90

T0364 1029 178 32 288 0.85 0.90
T0368 869 56 21 436 0.93 0.95

T0369 499 167 81 919 0.74 0.91

T0370 893 298 86 850 0.74 0.90
T0373 902 257 48 436 0.77 0.90

T0374 859 303 60 623 0.73 0.91
T0380 469 178 37 438 0.72 0.92

T0383 217 536 55 617 0.29 0.92

T0385 1317 234 1 451 0.84 0.99

FM T0287 164 88 69 452 0.65 0.86
T0300 144 85 18 201 0.62 0.91

T0304 36 30 43 830 0.54 0.95

T0307 349 167 51 1172 0.67 0.95
T0309 28 87 8 377 0.24 0.97

T0314 65 51 58 882 0.56 0.93

T0319 110 100 118 1278 0.52 0.91
T0348 39 119 9 282 0.24 0.96

T0350 160 135 39 1096 0.54 0.96

T0353 127 112 17 778 0.53 0.97
T0361 335 174 123 884 0.65 0.87

T0382 149 95 58 679 0.61 0.92

The iteration idea is described in Figure 3.2.

Specifically, the first step is to identify conserved re-

gions from 10 decoys generated by HHpred 24 and 10

decoys by SP3 35. In this step, we determined the

maximum length of conserved regions from these de-

coys. Then we re-generated 1,000 decoys by running

ROSETTA with the conserved regions fixed. Next

we applied our identification method again to detect

conserved regions from the newly generated 1,000 de-

coys. Thus this “identification-and-prediction” cycle

was repeated iteratively until the generated decoys

converge. In practice, this iteration process generally

ends in less than three rounds of iterations. Finally

we adopted a clustering method to choose one decoy

from the decoys generated in the final round.

Fig. 1. Iteration Strategy to Improve Protein

We applied this iteration strategy to make blind

structure predictions for the 37 CASP7 targets. Ex-

perimental results illustrate that compared with

ROSETTA, our method helps generate more accu-

rate models for 10 out of 12 FM targets. Due to the

space limit, only four of these FM targets, T0300,

T0348, T0350 and T0361, are shown in Figure 3.

Take T0300 as an example. We observe that after

two rounds of iterations, our method yields 68.1%

good decoys, and this ratio increases to 98.7% after

three rounds of iterations. In contrast, ROSETTA

generates only 28.9% good decoys. Here, a decoy is

good if its TMscore is over 0.4 37. In addition, the

selected decoy is also better than that reported by

ROSETTA.

We observe similar improvements for TBM tar-

gets. Specifically, in the first step, the conserved re-

gions cover over 60% positions. The decoys are im-

proved step by step and the final decoys are better

than the threading results for most targets. Take

T0283 as a concrete example. All current threading

methods fail to find any significantly similar tem-

plates for this target. In contrast, after three iter-

ations of our method (See Figure 5), the TMscore
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Fig. 3. The performance of Iteration Strategy for T0300,T0348,T0350,T0361. X-axis denotes TMscore, and Y-axis denotes the

number of models having this score. In each iteration we generate 1000 decoys.

is improved to be over 0.4. This result suggests a

clear advantage of our method relative to threading

methods.

In the experiments, we also find that the de-

coys cannot be further improved after more itera-

tion steps. One possible reason is that although the

conserved regions are native-like, there still exist sig-

nificant differences for the loop regions. The low oc-

currence of loop regions are confirmed by a careful

examination of ROSETTA’s fragments.

The CASP7 results demonstrate that relative to

TBM targets, FM targets are generally more diffi-

cult to predict 1. Our experimental results regarding

conserved regions confirm this observation: For most

TBM targets, the conserved regions cover more than

60% positions, while for FM targets, the ratio is just

around 30%. This also implies a large improvement

space of prediction methods for FM targets.

In summary, the experimental results lead to a

conclusion that the iteration strategy can greatly re-

duce the search space since more and more regions

become native-like as the iteration proceeds. In con-

trast, the commonly-used Monte Carlo method keeps

an unchanged search space in the search process.

Generally speaking, a smaller search space usually

implies a higher possibility to obtain the native-like

structure, showing an advantage of our method in

theory.

Fig. 5. The performance of Iteration Strategy for target

T0283. In each iteration we generate 1000 decoys. X-axis
denotes TMscore, and Y-axis denotes the number of models

having this score.

4. Conclusion

In this paper, we present an algorithm to detect

the maximum conserved regions from m decoys in

O(m2n2 log n) time. Experimental results demon-
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strate that our method can significantly distinguish

native-like regions from noisy regions.

Applying conserved regions in domain parsing

and other topics will be in our future works.
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