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External factors such as radiation, drugs or chemotherapy can alter the expressions of a subset of genes. We call these genes the primarily
affected genes. Primarily affected genes eventually can change the expressions of other genes as they activate/suppress them through
interactions. Measuring the gene expressions before and after applying an external factor (i.e., perturbation) in microarray experiments
can reveal how the expression of each gene changes. It however can not identify the cause of the change.

In this paper, we consider the problem of identifying primarily affected genes given the expression measurements of a set of genes
before and after the application of an external perturbation. We develop a novel probabilistic method to quantify the cause of differential
expression of each gene. Our method considers the possible gene interactions in regulatory and signaling networks for a large number
of perturbed genes. It uses a Bayesian model to capture the dependency between the genes.

Our experiments on both real and synthetic datasets demonstrate that our method can find primarily affected genes with high
accuracy. Our experiments also suggest that our method is significantly more accurate then SSEM and the Student’s t-test.

1. Introduction

A significant set of microarray experiments measure
gene expressions in the presence of external perturba-
tions 7, 18. In these perturbation experiments, radia-
tion 36, drug 27 or other biological conditions are ad-
ministered on tissues and their responses are monitored
using microarrays. The expressions of the genes before
perturbations correspond to control data, while the ex-
pressions of genes after perturbations correspond to non-
control data 15.
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Fig. 1. Illustration of the impact of a hypothetical external perturba-
tion on a small portion of the Pancreatic Cancer pathway. The path-
way is taken from the KEGG database. The solid rectangles denote the
genes affected directly by the perturbation, the dashed rectangles indi-
cate genes secondarily affected through interactions. The dotted rect-
angles denote the genes that are not affected by the perturbation. →
implies activation and a implies inhibition. In this figure, gene K-Ras,
Raf and Cob42Roc are primarily affected and MEK, Ral and RalGDS
are secondarily affected through interactions.

A fraction of genes respond to the external pertur-
bation by changing their expression values significantly

between control and non-control groups. Such genes are
called differentially expressed (DE) genes 3. The remain-
ing genes, without noticeable changes in their expres-
sions, are called equally expressed (EE) genes.

The DE genes that are directly affected by the ex-
ternal perturbation 11 are denoted as primarily affected
genes. Rest of the DE genes change their expressions
due to interactions with primarily affected genes and each
other through signaling and regulatory networks 8, 28, 32.
We call them as secondarily affected genes. In this paper,
the term gene networks is used to refer signaling and reg-
ulatory networks. Figure 1 shows the state of the genes in
the Pancreatic Cancer pathway after a hypothetical exter-
nal perturbation is applied 2, 34. In this figure, genes K-
Ras, Raf and Cob42Roc are primarily affected and MEK,
Ral and RalGDS are secondarily affected through inter-
actions.

We consider the problem of identifying the primarily
affected genes in a perturbation experiment where gene
expressions are provided before and after the application
of perturbation for a set of samples. Existing methods
to identify the primarily affected genes such as associa-
tion analysis techniques 17, 27, haplo-insufficiency profil-
ing 14, 13, 26 and chemical-genetic interaction mapping 30

require additional information such as fitness based as-
says of drug response or a library of genetic mutants.
Bernardo et al. suggested a regression based approach
called MNI based on the assumption that the internal
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genetic interactions are offset by the external perturba-
tion 11. It estimates gene-gene interaction coefficients
from the control data. It then uses those coefficients to
predict the target genes in the non-control data. Cosgrove
et al. proposed a method named SSEM that is similar to
MNI 8. SSEM models the effect of perturbation by an
explicit change of gene expression from that of the un-
perturbed state. Vaske et al. developed a method to infer
the affected regulatory networks due to external perturba-
tions using a graphical model called probabilistic factor
graph 37. These methods have several limitations.

(1) Lack of gene interaction data: The existing methods
do not employ regulatory or signaling (i.e. gene net-
works) to model gene-gene interactions. Since gene
networks are manually curated using domain experts,
they are reliable sources of gene interactions. Utiliz-
ing them has the potential to more accurately solve
the problem of identifying primarily affected genes.

(2) Limited perturbations: These methods are suitable
when only a very small number of genes are per-
turbed, e.g., the genetic perturbation experiments
are often designed for single gene perturbations 17.
However, external effects such as radiation can alter
the expression of many genes directly making the ex-
isting methods to be of limited use.

(3) Simplistic models: Most of these methods provide
only the set of genes that are directly affected by the
perturbations and do not specify any error bounds.
However, a non-probabilistic inference oversimpli-
fies the problem especially in cases when a small
number of gene expression measurements are avail-
able. As a result, these methods can overfit the data,
making the solution unreliable.

The method we propose in this paper addresses these lim-
itations. We assume that the underlying gene network can
be modeled as a directed graph where each node repre-
sents a gene, and a directed edge from gene a to gene b
represents a genetic interaction (e.g a activates or inhibits
b). We define two genes as neighbors of each other if they
share an edge. For example, in Figure 1, genes K-Ras and
Raf are neighbors as K-Ras activates Raf. A neighbor can
be classified as incoming or outgoing if it is at the start or
at the end of the directed edge, respectively. In Figure 1,
Raf is an incoming neighbor of MEK and MEK is an out-
going neighbor of Raf.

Contributions:

(1) We propose a new probabilistic method to find the
primarily affected genes in microarray dataset. Our
method employs gene networks as a prior belief in
a Bayesian framework. When the expression level
of a gene alters, it can affect some of its outgo-
ing neighbors. Thus, the expression of a gene can
change due to external perturbation or because of
one or more of the affected incoming neighbors. We
build our solution based on this observation. Let
G = {g1, g2, · · · , gM} denote the set of all genes.

(2) We represent the external perturbation by a hypothet-
ical gene (i.e. metagene) g0 in our the gene network.
An edge from the metagene the to all the other genes
implies that the external perturbation has the poten-
tial to affect all the other genes. So, g0 is an incoming
neighbor to all the other genes. We call the resulting
network the extended gene network. Our method es-
timates the probability that a gene gj is DE due to an
alteration in the activity of gene gi (gi ∈ G ∪ {g0},
gj ∈ G) if there is an edge from gi to gj in the ex-
tended network. We use a Bayesian model in our so-
lution with the help of Markov Random Field (MRF)
to capture the dependency between the genes in the
extended gene network.

We optimize the pseudo-likelihood of the joint posterior
distribution over the random variables in the MRF using
Iterative Conditional Mode (ICM) 5. The optimization
provides us the state of the genes and the pairwise causal-
ity among the genes including the metagene.

Our experiments on both real and synthetic datasets
demonstrate that our method can find primarily affected
genes with high accuracy. We compared our method with
SSEM and Student’s t test and obtained significant higher
accuracy in finding out the primarily differentially ex-
pressed genes.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe our method in detail. In Section 3 we
discuss the experiments and results. Finally, in Section 4
we describe our key conclusions.

2. Methods

In this section we describe our method. Section 2.1
presents the notations. Section 2.2 provides an overview
of our solution. Section 2.3 discusses the modeling of the
MRF based prior distribution. Section 2.4 describes how
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we formulate a tractable approximate version of the ob-
jective function. Section 2.5 discusses how we compute
the likelihood of the expression of a gene. Section 2.6
explains how we optimize the objective function.

2.1. Notation and problem formulation

We start by describing the notation used in the rest of
this paper and provide a formal definition of the problem.
We use two types of parameters to model this problem,
namely observed and hidden. The values of observed
variables are available in the given data set. We estimate
the hidden variables from the observed data.
Observed variables: There are two sets of observed
variables.

• Microarray dataset: We denote the number of mi-
croarray samples and the number of genes by N and
M respectively. We represent the set of all genes in
the dataset with G = {g1, g2, · · · , gM}. For each gene
gi, the dataset contains the expressions before and af-
ter the perturbation (i. e. control and non-control) re-
spectively. We denote the expressions of gi with yij
and y

′
ij in control and non-control group respectively,

(1 ≤ i ≤M , 1 ≤ j ≤ N ). Let yi = {yi1, yi2, · · · yiN}
and yi

′
= {yi1′, yi2′, · · · yiN ′} denote the expression

values of gi in control and non-control groups respec-
tively. We use Yi to denote all the data for gene gi in
control and non-control groups (i.e. Yi = yi ∪ y

′
i).

Y =
⋃M
i=1 Yi represents the collection of the entire

gene expression data.
• Neighborhood variables: We use the term W =

{Wij} to represent if any two genes gi and gj are
neighbors. Wij (1 ≤ i, j ≤ M ) is set to 1 if gi is
an incoming neighbor of gj (i.e. gj has an incoming
edge from gi in the extended gene network) and 0 oth-
erwise.

Hidden Variables: There are two sets of hidden vari-
ables.

• State variables: Each gene gi can attain one of the
two states (i.e. DE or EE). We introduce the variables
S = {Si} to indicate the states of the genes. Formally,
Si is DE if gi is differentially expressed and EE if gi is
equally expressed.

• Interaction variables: We define the set of random
variables X = {Xij} to represent the joint state of
genes gi and gj (0 ≤ i ≤M , 1 ≤ j ≤M ). Formally,

Xij =





1 if Si = DE and Sj = DE;
2 if Si = DE and Sj = EE;
3 if Si = EE and Sj = DE;
4 if Si = EE and Sj = EE;

It is evident that the value ofXij depends on the values
of two independent variables Si and Sj . Note that the
values of Xij are categorical in nature.

Problem formulation: We have microarray expression
data Y and the gene network {G,W} as input to the prob-
lem. From now on, the gene network {G,W} will be re-
ferred to by V . We would like to estimate the posterior
density p(Xij |X − Xij ,Y,V,Wij = 1). Specifically,
a lower value of p(X0j = 2|X − X0j ,Y,V,Wij = 1)

indicates a higher chance that the gene gj is primarily af-
fected, as X0j = 2 indicates that the metagene is DE and
gene gj is EE. Based on this probability estimation, we
create a list of primarily affected genes.

2.2. Overview of our solution

An approach to solve our problem can be to maximize a
likelihood distribution over the gene expression Y where
X are the parameters of the distribution. The objective is
to obtain the maximum likelihood estimate (MLE) of X .
However, there are two problems in this this approach.
First, MLE requires a large number of data points to ac-
curately estimate the parameters. Second, MLE depends
only on the observed data and cannot utilize domain spe-
cific knowledge; as a result it leads to overfitting of data
and poor generalization.

We develop a Bayesian framework for estimating X
that addresses the above-mentioned limitations of the ex-
isting approaches. Bayesian approaches can generally
estimate the parameters with fewer data-points, which
makes our approach more suitable for perturbation ex-
periments 6.

We estimate the probability of Xij given the other
observed and hidden variables. In this approach, we aim
to maximize the joint density of the X variables given
the gene expressions Y and the gene network V . Thus,
the objective to maximize is given by,

P (X|Y,V, θY , θX) =
P (Y|X ,V, θY )P (X|V, θX)∑
X P (Y|X ,V, θY )P (X|V, θX)

(1)

θY is the set of parameters for the likelihood function
P (Y|X ,V, θY ) and θX is the set of parameters for the
prior density function P (X|V, θX). θX and θY will be
discussed in Sections 2.3 and 2.5 respectively.

28



Since a direct optimization of Equation 1 is impracti-
cal due to exponential number of terms in the denomina-
tor, we define a more tractable objective function as dis-
cussed in Section 2.4. We use iterative conditional mode
(ICM) to optimize the objective function and obtain an
assignment of X , θX and θY . Finally we estimate the
posterior probability p(Xij |X − Xij ,Y, θX , θY ) for ev-
ery Xij when Wij = 1. Using this posterior probability,
we quantify the chance that one gene is DE due to one of
its incoming neighbors.

2.3. Computation of the prior density
function

(a) Perturbation experiment

(b) Markov random field graph

Fig. 2. (a) A small hypothetical gene network with a perturbation. The
circle g0 represents the abstraction of the external perturbation i.e. g0.
Rectangles denote genes. → implies activation and a implies inhibi-
tion. The dotted arrow from g0 indicates potential effect on each genes.
The directly impacted DE genes g1 and g3 are denoted by solid rect-
angle. Dashed rectangles g4 and g5 imply secondarily impacted DE
genes. Dotted rectangle is for the EE gene g2. (b) The graph for Markov
random field created from the hypothetical gene network in (a). For
each neighbor pair we create a circular node. We create two rectangular
nodes that do not correspond to any neighbor pair, however they are part
of the MRF graph. Two nodes are connected with an undirected edge if
they share a subscript at same position and the two genes correspond-
ing to the other subscript interact in the gene network. Also, at least
one of the nodes represents an interaction in the network. For example,
node X04 and X14 are connected as they share 4 at second position
and g0 is an incoming neighbor of g1. Both X04 and X14 correspond
to interactions in the network.

In this section, we describe how we build the prior den-
sity function P (X|θX). We incorporate information from
biological networks as prior belief in this density func-
tion. The following two assumptions encapsulate our be-
lief about gene interactions.

(1) Each gene can affect the expressions of its outgoing
neighbors. If the activity of a gene is altered, the ef-
fect can propagate to its outgoing neighbors.

(2) The metagene g0 (i.e. external perturbation) can af-
fect the expression of every other gene. This is easy
to visualize as the external perturbation such as radi-
ation can change the activity of any of the genes.

Clearly, when the data does not follow one or more of the
hypotheses, the optimization function can overcome the
prior belief with a strong support from the data.

In order to compute the prior density function, we
define a Markov Random Field (MRF) over the X vari-
ables 24. MRF is a probabilistic model, where the state
of a variable depends only on the states of its neighbors.
MRF is useful to model our problem as the states of genes
depend on their neighbors. Here, the MRF is an undi-
rected graph Ψ = (X , E), where X = {Xij} variables
represent the vertices of the graph (i.e. each interac-
tion variable Xij corresponds to a vertex). We denote
the set of edges with E = {(Xij , Xpj)|Wpi = Wij =

1} ∪ {(Xij , Xik)|Wjk = Wij = 1}. Thus, two vari-
ables inX share an edge if they share a common subscript
at the same position, the two genes corresponding to the
other subscript interact in the gene network and finally at
least one of the two nodes represents an interaction in the
extended gene network. For example, in Figure 2(b),X35

and X25 are neighbors, as they share 5 (i.e. gene g5) as
the second subscript and g2 and g3 interact in the gene
network in Figure 2(a). Also, X35 corresponds to a real
interaction in the network.

One important point to note is that, this graph does
not use the state variables S to model the dependencies
between the genes. Rather, it establishes those dependen-
cies over the X variables. For example, in Figure 2(b)
we draw the MRF graph corresponding to the hypothet-
ical gene network in Figure 2(a). In the gene network,
there is an edge from g2 to g3. So, g2 can potentially
change the state of g3. We create an edge from X12 to
X13 that corresponds to the edge from g2 to g3. As g1

is common for X12 and X13, if they assume the same
value (i.e. X12 = X13), it implies that the genes g2 and
g3 are in the same state (i.e. S2 = S3). We formulate
these dependency constraints using a set of unary and bi-
nary functions called feature functions. We discuss these
feature functions next.

We denote the neighbors of Xij in the MRF graph
as X∗ij = {Xpj |Wpi = 1} ∪ {Xik|Wjk = 1}. We de-
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fine a clique over each Xij and its neighbors X∗ij by
Cij provided Wij = 1. A feature function f(Cij) is a
Boolean function defined over the cliques Cij of Ψ. This
function evaluates to 1 or 0, if it is satisfied or not, re-
spectively. We define a potential function ψ(Cij) cor-
responding to f(Cij) as an exponential function given
by exp(γf(Cij)). Here γ is a coefficient associated
with f(Cij) that represents the relevance of f(Cij) in
the MRF. According to Hammersley-Clifford theorem,
we express the joint density function of the MRF over
X as product of potential functions constructed for that
MRF as, p(X|θX) = 1

∆

∏
Cij ,Wij=1 ψ(Cij)

16. In
this formulation, ∆ is the normalization function ∆ =∑
X
∏
Cij ,Wij=1 ψ(Cij). To limit the complexity of our

model, we consider only cliques of size one and two.
We define four feature functions to capture the de-

pendencies among the variables inX according to the two
hypotheses. Based on the number of input variables, they
are classified as unary and binary feature functions.

Table 1. The table enumerates the truth values for the two binary
feature functions. Only the permitted entries are annotated with
0/1. The blank entries corresponds to combinations that are not
possible. (a) f3(Xij , Xpj) represents the feature function for left
equality. (b) f4(Xij , Xik) represents the feature function for right
equality.

Xpj Xik

Xij

1 2 3 4

Xij

1 2 3 4
1 1 0 1 1 0
2 1 0 2 0 1
3 0 1 3 1 0
4 0 1 4 0 1

(a) f3(Xij , Xpj) (b) f4(Xij , Xik)

Unary feature functions: A primary component of the
prior density function is modeling the frequency of Xij

itself. We capture this frequency using two unary fea-
ture functions defined over singleton cliques. We define a
feature function F1(Xij) which returns one whenXij = 1
and 0 otherwise. To capture the complemented events, we
define another feature function F2(Xij), which returns to
1 when Xij = 0 and returns 0 otherwise.
Binary feature functions: These feature functions are
defined to incorporate the two assumptions stated at the
beginning of this section. Consider a sequence of four
genes g1, g2, g3 and g5 in Figure 2(a). X23 is a variable
in the MRF graph that depends on the states of g2 and
g3. X13 is a neighbor of X23 in MRF graph as g1 is an
incoming neighbor of g2 in the gene network. Similarly,

X25 is a neighbor of X23 as g5 is an outgoing neighbor
of g3. If S1 equals to S2 then X23 = X13. Similarly if
S3 equals to S5 then X23 = X25. We capture these events
in two feature functions for Xij based on the incoming
neighbors of gi and the outgoing neighbors of gj .

• Left equality: Let us denote the incoming neigh-
bors of gi with In(gi). We write a feature function
f3(Xij , Xpj), ∀p, gp ∈ In(gi). f3(Xij , Xpj) = 1 if Si
= Sp and Wpi = Wij = 1. Otherwise, f3(Xij , Xpj) =
0. We denote the summation of this function over all
the incoming neighbors of gi as,

F3(Xij) =
∑

p,Wij=1,Wpi=1

f3(Xij , Xpj).

• Right equality: Let us denote the outgoing neigh-
bors of gj as Out(gj). We define a feature function
f4(Xij , Xik), ∀k, gk ∈ Out(gj). f4(Xij , Xik) = 1 if
Sk = Sj and Wjk = Wij = 1. Otherwise, f4(Xij , Xik)

= 0. We denote the summation of this function over all
the outgoing neighbors of gj as,

F4(Xij) =
∑

k,Wij=1,Wjk=1

f4(Xij , Xik).

Table 1 enumerates the truth values of the binary feature
functions for different values of their arguments. Only the
permitted entries are annotated with zero and one. The
other entries require illegal combination of argument val-
ues.

In the binary feature functions Xpj or Xik may not
represent any interactions from the extended gene net-
work when Wpj = 0 or Wik = 0, respectively. We rep-
resent them by rectangles in Figure 2(b).

Based on these feature functions, we define the joint
density function of X as,

p(X|θX) =
1

∆
exp(

∑

i,j,Wij=1,k∈{1,2,··· ,4}
γkFk(Xij)) (2)

In the above equation γk, k ∈ {1, 2, · · · 4} are the coef-
ficients of the four feature functions in MRF. In the next
section, we discuss how we define the objective function
with respect to the MRF. We also describe how we for-
mulate the posterior probability density function for Xij .

2.4. Objective function approximation

A direct maximization of the objective function given
by Equation 1 is impractical, as it requires evaluation
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of exponential number of terms in the denominator. We
employ pseudo-likelihood as an established substitute to
Equation 1 4. Pseudo-likelihood is the simple product
of the conditional probability density function of the Xij

variables. Geman et al. proved the consistency of the
maximum pseudo-likelihood estimate 12. The approxi-
mated objective function can be written as,

F = arg max
X

(
∏

i,j

Fij) (3)

We derive the posterior density function Fij of Xij when
Wij = 1 as,

Fij

= p(Xij |X −Xij ,Y, θX , θY ,Wij = 1)

=
p(Yi, Yj |Xij , X∗ij , θY ,Wij = 1)p(Xij |X −Xij ,Y, θX ,Wij = 1)

∑
Xij∈{1,··· ,4} p(Yi, Yj |Xij , X

∗
ij , θY ,Wij = 1)

(4)

There are two different terms in objective function of
Equation 4. p(Xij |X −Xij ,Y, θX , θY ,Wij = 1) stands
for the conditional prior density function of Xij which
can be derived from Equation 2 using Bayes rule. We
discuss p(Yi, Yj |Xij , X

∗
ij , θY ,Wij = 1), the likelihood

function in the next section.

2.5. Calculation of likelihood density
function

In this section, we describe how we derive the likelihood
function. We assume that gene expressions in a group
follow a normal distribution. We can redo the derivations
if gene expressions follow some other distribution.

Consider a set of measurements for a gene gi
that follows a single Gaussian distribution by zi =
{zi1, zi2, · · · , ziN}. We denote the latent mean of zi by
µ and the standard deviation by σ. As different genes
can have different average expressions, we assume that µ
follows a genome-wise normal distribution with mean µ0

and standard deviation τ 23. Thus, for zi, the likelihood
for the data points in that group is given by,

L(z|µ0, σ2, τ2) =

∫
[

n∏

i=1

N (zi|µ, σ2)]N (µ|µ0, τ2)dµ

=
σ

(
√

2πσ)n
√
nτ2 + σ2

exp(−
∑
i z

2
i

2σ2
− µ20

2τ2
)·

exp(

τ2n2z2

σ2 +
σ2µ2

0
τ2

+ 2nzµ0

2(nτ2 + σ2)
)

(5)

The reader can find the derivation of Equation 5 in
Demichelis et al 10.

If a gene is DE, its expression measurements in con-
trol and non-control groups follow separate distributions.
On the other hand, for equally expressed genes, all the
measurements in both the groups share the same mean.
The data likelihood for a DE gene is given by,

L(gi) =

{
L(yi|µ0, σ2, τ2)L(y

′
i |µ0, σ2, τ2), if Si = DE.

L(yi ∪ y
′
i |µ0, σ2, τ2), if Si = EE

(6)

Now we are ready to derive the likelihood density for
different values of Xij . Let us denote the set of parame-
ters {µ, σ, τ} by θY .

We have four different forms for the likelihood of
(Yi, Yj) due to four different values it can assume. How-
ever, we shall derive only for Xij = 1, as for the other
values of Xij we have similar derivations.

p(Yi, Yj |Xij = 1, X∗ij , θY ,Wij = 1)

=
∑

τi,τj∈{DE,EE}
p(Yi, Yj |Si = τi, Sj = τj , θY ,Wij = 1)·

p(Si = τi, Sj = τj |Xij = 1, X∗ij , θY ,Wij = 1)

(7)

From the definition of Xij , p(Si = τi, Sj =

τj |Xij = 1, X∗ij , θY ) equals to 1 when Si = DE and Sj =
DE. Its value is zero for all other values of Si and Sj . So,
continuing from the last step of Equation 7,

p(Yi, Yj |Xij = 1, X∗ij , θY ,Wij = 1)

= p(Yi, Yj |Si = DE,Sj = DE, θY ,Wij = 1)

= p(Yi|Si = DE,Sj = DE, θY )·
p(Yj |Si = DE,Sj = DE, θY )

= p(Yi|Si = DE, θY )p(Yj |Sj = DE, θY )

= L(gi)L(gj)

In a similar way, we can derive the likelihood func-
tions for the other three values of Xij variable. A special
case arises when gi is the metagene, i.e. g0. Specifically,
L(g0) = 1 if S0 = DE and 0 otherwise, as, according to
our assumption the metagene is always DE.

2.6. Objective function optimization

So far, we have described how we compute the posterior
density function. The final challenge is to find the values
of the hidden variables that maximize the objective func-
tion (Equation 3). We develop an iterative algorithm to
address this challenge.
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In our model, we have three different sets of parame-
ters. The nodes of the MRF given byX consist of one set.
Other two sets are the parameters of conditional proba-
bility density function of Xij and likelihood function of
observed data given by θX = {γ1, · · · γ4} and θY = {µ0,
σ, τ ), respectively. In each iteration, we first estimate θX
and θY based on the estimated value of X in the previ-
ous iteration. Next, based on the estimated parameters,
we estimate X that maximize the objective function in
Equation 3.

The likelihood function is non-convex in terms of the
parameters θY = {µ0, σ , τ ). Also, the conditional den-
sity is non-convex in terms of θX = {γ1, · · · γ4}. We use
a global optimization method called differential evolution
to optimize both of them 35. To optimize the objective
function in equation 3, we employ the ICM algorithm de-
scribed by Besag 5. Briefly, our iterative algorithm works
as follows.

(1) Obtain an initial estimate of S variables. In our
implementation we use student’s t-test assuming the
data follows normal distribution. We use 5% confi-
dence interval for this purpose.

(2) Estimate parameters θY that maximizes the data like-
lihood function given by,

arg max
θY

∏

Xij

p(Yi, Yj |Xij , X
∗
ij , θY ,Wij = 1)

We implement this step using Differential Evolution,
which is similar to the genetic algorithm.

(3) Calculate an estimate of the parameters θX that max-
imizes the conditional prior density function by,

arg max
θX

∏

Xij

p(Xij |X − {Xij}, θX ,Wij = 1)

We also implement this step using Differential Evo-
lution.

(4) Carry out a single cycle of ICM using the current
estimate of S, θX and θY . For all Si, maximize∏
Xmn

p(Xmn|X − Xmn,Y, θX , θY ,Wmn = 1)

when Xmn ∈ {Xrt|r = i or t = i} and Wrt = 1.
(5) Go to step 2 for a fixed number of cycles or until X

converges to a certain predefined value.

We optimize the objective function in terms of the Si
(1 ≤ i ≤ M ) variables instead of Xij variables. Specif-
ically, in step 4, we go over all the Si variables, and
optimize Fij function (given by Equation 4) for only
those Xij variables that are impacted by the change of

Si. The optimization procedure is guaranteed to converge
since in every iteration the value of the objective func-
tion increases. We continue the iterative process, until
the changes in estimates of the parameters between two
consecutive iterations reach below a certain cutoff level.

3. Experiments

In this section we discuss the experiments we con-
ducted to evaluate the quality of our method. We im-
plemented our method in MATLAB and Java. We
obtained an implementation of Differential Evolu-
tion from the http://www.icsi.berkeley.edu/

˜storn/code.html. We compared our method with
SSEM 8 as SSEM is one of the most recent methods that
can be used to solve the problem considered in this pa-
per. We obtained SSEM from http://gardnerlab.

bu.edu/SSEMLasso. We ran our code on an AMD
Opteron 2.4 Ghz workstation with 4GB memory.
Dataset: We used the dataset collected by Smirnov et
al. 33. It was generated using 10 Gy ionizing radiation
over immortalized B cells obtained from 155 members
of 15 Centre d’tude du Polymorphisme Humain (CEPH)
Utah pedigrees 9. Microarray snapshots were obtained at
0th hour (i.e., before the radiation) and 2 and 6 hours af-
ter the radiation. We adapt the time series data to create
the control and non-control data for our experiments. We
use the data before radiation as control data. For the non-
control data we calculate the expected expressions of a
gene at each points after the radiation. We select the one
with higher absolute difference from the expected expres-
sion of control data for that gene. This dataset is used in
the experiments described in Sections 3.1 and 3.2. For the
experiments described in Sections 3.3 and 3.4, we derive
new datasets using this data. The details of this process
can be found in corresponding sections.

We also collect 24,663 genetic interactions from
the 105 regulatory and signaling pathways of KEGG
database 22. Overall 2,335 genes belong to at least one
pathway in KEGG. We consider only the genes that take
part in the gene networks in our model.

3.1. Biological significance

In this section, we investigate the support in existing liter-
ature for susceptibility to radiation based perturbation for
the primarily affected genes found by our method. We
train our method on the dataset described above. After
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the optimization we rank each gene gj in decreasing or-
der of L(g0)L(gj), where L(gj) is given by Equation 6.
We tabulate the top 25 genes in Table 2.

Table 2. List of top 25 genes that are mostly affected by external
perturbation. The dataset was generated using 10 Gy ionizing radi-
ation over immortalized B cells obtained from 155 members of 15
Centre d’tude du Polymorphisme Humain (CEPH) Utah pedigrees
Genes are tabulated row-wise, in increasing order of ranking.

PGF IL8RB FOSL1 F2R PPM1D
MDM2 CDKN1A TNC PLXNB2 EPHA2
DDB2 TP53I3 PLK1 TNFSF9 ADRB2

MAP3K12 JUN SORBS1 LRDD SDC1
MYC PRKAB1 EI24 DDIT4 FAS

Nine out of the ten highest ranked genes have sig-
nificant biological evidence that they are impacted by
radiation. Imaoka et al. 19 compared the gene expres-
sion between normal mammary glands to spontaneous
and γ-radiation induced cancerous glands of rat. The
PGF (parental growth factor) gene showed differential
expression in both spontaneous and irradiated carcino-
mas. Nagtegaal et al. 29 applied radiation to human rectal
adenocarcinoma and compared the gene response to that
of normal tissues. The cytokines and receptor IL8RB
showed differential expression between normal and ir-
radiated rectal tissues. Amundson et al. 1 administered
γ-radiation to p-53 wild type ML-1 human myeloid cell
line. FOSL1 (known by FRA1 that time) showed differ-
ential expression as the stress response. Lin et al. 25 ap-
plied ionizing radiation on human lymphoblastoid cells.
F2R, a coagulation factor II receptor, was upregulated in
that experiment. Jen et al. 21 investigated the effect of
ionizing radiation on the transcriptional response of lym-
phoblastoid cells in time series microarray experiments.
PPM1D, a gene related to DNA repair, showed response
to both 3Gy and 10Gy radiation. Wu et al. 38 conducted
a high dose UV radiation experiment to observe the re-
lation between MDM2 gene on p53 gene. Their ex-
periment revealed that initially both protein and mRNA
level of MDM2 increases in a p53 independent manner,
which clearly substantiated the direct effect of radiation
on MDM2. Jakob et al. 20 irradiated human fibroblasts
with accelerated lead ions. Confocal microscopy discov-
ered a single, bright focus of CDKN1A protein in the
nuclei of human fibroblast within 2 minutes after radi-
ation. Rieger et al. 31 applied both ultra violet and in-
frared radiation on fifteen human cell lines and observed
that PLXNB2 was up-regulated for both kind of radia-

tions. Zhang et al. 39 reported that EPHA2 worked as an
essential mediator of UV-radiation induced apoptosis.

This experiment demonstrates that we find sufficient
support in existing literature that the top ranked genes
found by our method (i.e. highly likely to be primarily
affected) are affected by radiation.

3.2. Evaluation of the rankings of
neighbor genes

Recall that our goal is to find the primarily affected genes.
We achieve this objective by computing the probability
for each DE gene to contribute towards the change in the
expression of its outgoing neighbors. In this experiment,
we evaluate our success in terms of how accurately we
rank the contribution probabilities of the genes as dis-
cussed in the next paragraph.
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Fig. 3. Frequency of average distance of rankings over training and
testing data. The figure shows that the difference is very close to zero.
This suggests that our method can rank the probabilistic effect of the
incoming neighbors of the genes with great precision. The average dif-
ference between the ranks obtained in the training and the testing data
is less than one position in 92.7% of the cases.

We divide the dataset of 155 samples into training
and testing set in 2:1 ratio. We create a ranked list for
each DE gene as follows. For each DE gene, we sort
its incoming DE neighbors in decreasing order of their
data likelihood probability with respect to the outgoing
neighbor. For example, assume g1 to be DE. It has four
incoming DE neighbors g0, g2, g3 and g4 where g0 is the
metagene. Let NLij denotes the normalized likelihood

function
p(Yi,Yj |Xij=1,X∗ij ,θY )∑

Xij∈{1,2,3,4} p(Yi,Yj |Xij ,X∗ij ,θY ) of Xij . For in-

stance, If NL01 ≥ NL41 ≥ NL21 ≥ NL31, then the
sorted list is {g0, g4, g2, g3}. We denote the sorted list
as a ranking of the incoming DE neighbors. Let us de-
note the position of a gene gi in the ranking of gj for
training data ρgj (gi). We create another set of rankings
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from the testing data likelihood probability. Let us de-
note the position of gi in the ranking of gj from test-
ing data by ρ

′
gj (gi). For a gene gj we define the aver-

age ranking distance between training and testing data as

δ(gj) =

∑
gi∈IN(gj)

abs(ρgj (gi)−ρ
′
gj

(gi))

|IN(gj)| , where IN(gj) is
the set of incoming DE neighbors for gi, abs(.) denotes
the absolute value and |IN(gj)| stands for the cardinality
of IN(gj).

We calculated the average ranking distance for all the
genes that have incoming neighbors apart from the meta-
gene. This experiment was repeated three times with a
different set of training and testing data. We create a his-
togram for the average differences from the three experi-
ments in Figure 3. It shows that the difference in average
ranking distance is very close to zero. The average dif-
ference between the ranks obtained in the training and the
testing data is less than one position in 92.7% of the cases.
Thus, we have demonstrated that we can accurately rank
the contribution probabilities of incoming neighbors for
DE genes in test dataset based on the model parameters
learned from the training dataset.

3.3. Comparison to other methods

In this section, we compare the accuracy of our method
to that of SSEM and a simpler method Student’s t test.
Synthetic data generation: We simulated real perturba-
tion events to prepare synthetic data with known primar-
ily and secondarily affected genes in a controlled setting.
We use the gene network derived from KEGG first to se-
lect a random gene from the network and denote it as a
primarily affected DE gene. We traverse the ancestors in
a breadth first manner. For each of the ancestor, we made
it a secondarily affected DE gene with a probability of
1−(1−q)η , where η is the number of incoming DE neigh-
bors. Here q (0.4 in our experiments) is the probability
that a gene is DE due to a DE predecessor. We repeat
these steps to create the desired number of primarily af-
fected genes. After the classification of the genes we cre-
ate control and non-control data for each of them for over
N patients. We use the control part of the real dataset
in Smirnov et al. 33 as the control part of our synthetic
dataset. To generate the non-control dataset, we traverse
each of the genes that participate in the gene networks.
Suppose, for a gene gi, the mean and standard deviation
of its expression in the control dataset are given by µi and
σi respectively. If the gene is EE we generate its non-

control data points from the a normal distribution given
by the parameters (µi, σ2

i ). If the gene is DE, we use the
same variance as that of the control group. However, we
use a different mean. For the primarily and secondarily
affected genes we use µ

′
i = µi ± dp and µ

′
i = µi ± ds

respectively, where dp > ds.
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(a) Gap = 0.2 ×σ
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(b) Gap = 0.6× σ

Fig. 4. Comparison of our method to SSEM and t-test. The number of
primarily affected genes is 50. The gap between the mean of primarily
affected and secondarily affected genes are 0.2 to 0.6 ×σ, where σ is
estimated from the real dataset. The figures indicate that our method
outperforms SSEM and t-test.

Experimental setup: Given an input dataset, using each
of the three methods, we ranked all the genes. Highly
ranked genes have higher chance of being a primarily af-
fected gene according to each method. We explain how
we do the ranking in the following.

• Our method: We sort the genes in decreasing order
of likelihood with the metagene. A higher likelihood
value implies a higher chance of being primarily af-
fected.

• SSEM: We train SSEM on the control dataset, where
it learns the correlation between the genes. We test
SSEM on the non-control dataset, where it produces a
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rank for each single data point.
• Student’s t test: We used the function called ttest2

from MATLAB. We apply it on every individual gene,
where it takes control and non-control dataset as input
and produces a p-value as output. By default, null hy-
pothesis is that “the differences of two input data set
are a random sample from a normal distribution with
mean 0 and unknown variance, against the alternative
that the mean is not 0”. Thus, the null hypothesis cor-
responds to the assumption that the gene is EE. So a
substantially lower p-value implies a higher chance of
being primarily affected. We performed the test on all
the genes and rank them according the increasing order
of p-values.

Let us assume the set of primarily affected genes
as PG and first k elements of the ranking as RGk.
We define the sensitivity of the ranking at position k

by ηk = |PG∩RGk|
|PG| . Thus, a higher value of ηk de-

notes a higher sensitivity. We prepare a sensitivity vector
{η1, η2, · · · η|R|}, by arraying the sensitivity of a ranking
at all the positions of the ranks. Here, |R| denotes the car-
dinality of the ranking. For SSEM we obtain a sensitivity
vector for every data points in the non-control dataset.
We create a consolidated sensitivity vector by averaging
them.
Results: We conducted experiments by for ds−dp

σ =

{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5, 1.75}, number of primar-
ily affected genes = {10, 50} and number of data points =
{10, 20, 40, 60, 80, 100, 125, 155}. Here, σ corresponds
to the standard deviation of the expressions of genes in
the dataset. However, due to space limitation we discuss
only two of them in this paper (see Figure 4). The results
we discuss correspond to the cases when we have 50 pri-
marily affected genes and 155 data points. The results of
the other experiments are similar to those in Figure 4(b).

Figures 4(a) and 4(b) show the sensitivity of the three
methods when (ds − dp) = 0.2 ×σ and 0.6 ×σ respec-
tively. The former one corresponds to the computation-
ally harder case as the difference between the control and
non-control datasets is small. As the gap between ds
and dp increases identifying primarily affected genes be-
comes easier.

From the figure, we observe that our method is sig-
nificantly more sensitive than the other two methods for
all datasets consistently. It reaches high sensitivity (more
than 90%) using the top 150 ranked genes when the gap
is small, and using the top 50 genes as the gap increases

to 0.6 ×σ. The results were similar for larger gap val-
ues (results not shown). The t test reaches around 40%
and 50% sensitivity at 200 ranking position respectively.
SSEM’s sensitivity is below 0.25 for all experiments even
within the top 200 positions.

We believe that there are two major factors for im-
proved results using our method. First, our method can
successfully incorporate the gene interactions while other
methods ignore this information. Second, our method is
capable of dealing with a broad range of primarily af-
fected genes while other methods’ performance deterio-
rates as this number grows. In real perturbation experi-
ments, often multiple genes are primarily affected. Thus,
we conclude that our method is more suitable for real per-
turbation experiments.

3.4. Sensitivity to the gap between
primary and secondary effects
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Fig. 5. Comparison of accuracies with SSEM and Student’s t test
while varying the ratio of gaps of primarily and secondarily affected
genes. For a category of gene, the gap denotes the absolute difference
of average expressions in control and non-control groups. The x-axis
represents the ratio of gaps of primarily and secondarily affected genes.
The y axis denotes the accuracy of our method as described inn Sec-
tion 3.4 The figure demonstrates that our method obtains very high ac-
curacy except when the ratio equals to zero, i.e the gap is equal for both
the primarily and secondarily affected genes.

The experiments over the real dataset suggest the valid-
ity of our model. One question however follows from
these experiments. How does our method compare when
we vary the distinction between primarily and secondar-
ily affected genes in terms of their gap between control
and non-control data for both those categories of genes.
To answer this question we conducted experiments on
synthetic datasets, where we change the differences be-
tween primarily and secondarily affected genes and com-
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pare our the accuracy of our method with that of SSEM
and student’s t test.
Synthetic data generation: We generate the data in the
presence of a hypothetical perturbation to simulate the
real dataset. The primarily and secondarily affected genes
are ascertained in the way described in Section 3.3.

To utilize the real dataset to maximum possible ex-
tent, we employ an innovative approach. Let us denote
the mean of gene gi in the control and non-control by µi
and µ

′
i, respectively. We subtract the difference (µ

′
i−µi)

from all the expressions in the non-control group of gi.
We repeat this subtraction for all the genes. Once the non-
control group is leveled to control group, we re-modify
the non-control expressions of DE genes. If a gene is
primarily DE according to the decided set of genes, we
increase or decrease its expression over the data points in
non-control group by dp. Similarly, we modify the ex-
pression value by ds, if the gene is secondarily affected.
Here, dp is greater than ds.
Results: We created three different sets of data by vary-
ing dp and ds. For all the datasets the number of pri-
marily affected genes was 40. For every dataset, we used
different values of dp given by {0.8, 1.2, 1.6}×σ, respec-
tively. However, within a dataset dp was fixed and ds/dp
ratio was varied as {0.1, 0.2, · · · 1.0}. We discuss only
the result for the dataset dp = 0.8 × σ as the results for
the other are similar. The accuracy of the methods can
fluctuate for different set of affected genes. Hence, for
a particular value of ds and dp we repeated the experi-
ment five times with different sets of affected genes and
averaged the result.

We run the three methods on all the datasets and ex-
tract ranks of genes as described in Section 3.3. A higher
position in the rank indicates a higher chance of being
primarily differentially expressed. Let the set of true pri-
marily affected genes be PA. Let RG be the set of first
|PA| genes from the rank produced by a method, where
|PA| is the cardinality of PA. We define accuracy of that
method as |PA∩RG||RG| .

Figure 5 depicts the result from this experiment. It
is clear that our method outperforms SSEM all the time.
The accuracy of our method is substantially better than
Student’s t test for all the cases except when the ratio
ds/dp equals to one. From this experiment, we can con-
clude that our method performs very well over a wide
range of difference between the non-control groups for
primarily and secondarily affected genes. Specifically,

for the case where these groups have the same mean, our
method perform almost as well as the other methods.

4. Conclusion

In this paper, we considered the problem of identifying
primarily affected genes in the presence of an external
effect that can perturb the expressions of genes. We as-
sumed that we were given the expression measurements
of a set of genes before and after the application of an
external perturbation. We developed a new probabilistic
method to quantify the cause of differential expression of
each gene. Our method considers the possible gene inter-
actions in regulatory and signaling networks, for a large
number of perturbations. It uses a Bayesian model with
the help of Markov Random Fields to capture the depen-
dency between the genes. It also provides the underlying
distribution of the impact with confidence interval.

Our experiments on both real and synthetic datasets
demonstrated that our method could find primarily af-
fected genes with high accuracy. It achieved significantly
better accuracy than two competing methods, namely
SSEM and the student’s t test method.

Our method produces a probability distribution
rather than a fixed binary decision. The major advantage
of this approach is that it augment every decision with a
range, and hence endows it with a confidence. A distri-
bution is most of the time more useful, as is it models the
very stochastic nature of gene interactions.
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