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Non-coding RNA (ncRNA) secondary structural homologs can be detected effectively in genomes with profile-based search methods. 

However, due to the lack of appropriate ncRNA structural evolution models, it is difficult to accurately detect distant structural 

homologs, i.e., ncRNA structures with variations caused by evolutionary changes such as the insertion or deletion of a substantial 

portion in the structure. This paper presents results of an investigation toward developing a new framework for distant ncRNA structural 

homolog search. In this work, secondary structure conformations are modeled as graphs with small tree width and sequence-structure 

alignment for homolog detection is formulated as graph homomorphism. The technique of NULL stem is used to resolve the issue of 

optional stems that may be deleted from the structure profile or may be a misalignment. Test results on 51 benchmark data sets of 

Infernal (9 of them containing pseudoknots) show that a program based on these methods, RNAv, with the capability of detecting 

pseudoknots, has a comparable performance to the latest version of Infernal, and is better in detection of some distant homologs. 

1.   INTRODUCTION 

Non-coding RNAs (ncRNA) are biologically important 

with functions in gene regulation, chromosome 

replication and RNA modification as well as other 

roles
10,24,36

. Homology-based searching 

methods
4,22,11,17,37,21,9

 have become important for 

annotation of ncRNAs
12,14,22,28,29,33

. Genome search 

programs for ncRNA annotation have been 

developed
22,17,21,9

 based on the covariance model (CM), 

a type of stochastic context-free grammar (SCFG), 

introduced by Eddy and Durbin
7
. The CM can profile 

position-specific compensatory mutations between base 

pairs as well as base conservations, yielding accurate 

ncRNA-specific and reconfigurable structural homolog 

search tools. Typically, the latest version of Infernal
9
 

can achieve more than 95% accuracy in recognizing 51 

benchmark ncRNA data sets with a high efficiency 

(Appendix, Table 1). 

However, the structural search tools have been most 

successful in identifying ncRNAs homologs with little or 

small structural variation. RNA secondary and tertiary 

structures are both constant and variable across 

evolution
15,2,23

; that is, some sub-structures, such as 

stem-loops, will be found in all members of a given 

ncRNA family, but other sub-structures will be found 

only in some of the sequences of the family. Such 

structural variation poses novel challenges in profiling 

distant homologs for effective searches
23

. In previous 

work
18,19,25-27

 RNA base and base pair evolution 

information was incorporated into SCFG models. To 

profile more substantial structural variations, usually 

these systems model variation with ribosomal RNA 
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basepair evolution information due to the lack of more 

general, adequate structural evolution models. An 

improved model for RNA structural evolution has also 

been proposed
15,3

 which can deal with limited degree of 

structure rearrangement between homologs but has yet 

to be incorporated into a search program. The program, 

trCYK
20

, a local alignment algorithm for Infernal, 

contains a technical solution that addresses the issue of 

aligning the structural model with incomplete sequences. 

The scoring is based on conserved primary sequence 

and structure information instead of a structural 

evolution model. To date, a general method that 

addresses both possible misalignments and structural 

variation is still missing
1
. Searches for structurally 

distant homologs still largely rely on customized 

methods or tools
2
. 

The current paper reports preliminary results from 

our on-going effort in developing a profiling framework 

for effective search of ncRNA homologs that contain 

substantial structural variation. We profile the RNA 

secondary structure with the conformational graph 

model developed from a notion used in our previous 

work RNATOPS
16

. It is a coarse-grain model that 

profiles the relationships (i.e., stems and loops) with 

graph vertices and edges.  The current work is different 

from the previous research, however, in both search 

targets and supporting techniques. In particular, to detect 

structurally distant homologs, we describe the structural 

variation with novel graph homomorphism rules that can 

define the deletion/insertion of stems and loops with 

homomorphic mapping between an ancestor and a 

descendent structure graphs. The homomorphism rules 

allow deletion of edges and vertices from the 

conformational graph, which was not permitted in our 

previous work with RNATOPS. The detection of the 

structural variation is accomplished with a new 

technique of NULL stem that identifies any stem with a 

high probability of being deleted in the evolution. 

Although the threshold for such (evolutionary) 

probabilities is still being determined in a related 

study
32

, the investigation of the graph homomorphic 

rules and implementation techniques is necessary 

because they are the mechanism to describe alternative 

and optional substructures, much the same role as 

context-free rules for CM
7
.  

We have tested on this new method to evaluate its 

capability to detect substructures (individual stems or 

combinations) possibly removed in the evolution. 

Typically, each used data set is a collection of multiple 

RNA sequences with a structural alignment and 

consensus, in which some stems may present in some 

but not all involved sequences. We have chosen to use 

the 51 benchmark data sets used by Infernal
9
 in our tests. 

Although certain regions in these data sets are highly 

conserved, overall it exemplifies substantial structural 

variation. For example, we obtained (through 

calculations) 19.57 as the averaged standard deviation of 

the sequence lengths in these data sets. Totally there are 

5686 training sequences in these 51 benchmark datasets, 

and 540 of them have at least one stem absent, 

accounting for 9.5% of the total number of sequences. 

Since Infernal performs well on these benchmarks, the 

evaluation on our method with comparison to Infernal is 

appropriate. We conducted tests based on filtering 

method and non-filtering method, and compared the 

search results based on different ratio threshold for the 

percentage of the hit region overlapping with the real 

RNA region. 

2.   METHOD 

We introduce a new method to profile RNA secondary 

structure variation for distant homolog search. It consists 

of three parts: the model to profile the consensus 

structure, rules for structural variation, and an algorithm 

to implement structure-sequence alignment and search. 

The model is based on the notion of conformational 

graph developed in our previous work to profile the 

consensus structure of multiple RNA sequences
16,30,31

, 

with additional elements convenient for the description 

of structural variation. 

2.1.   Conformational Graph 

The consensus secondary structure of RNA can be 

viewed as a topological relation among basic structural 

units, each of which is a stem or a loop. The structure 

model consists of two components: a weighted 

conformational graph that represents the relationship 

among all these basic structural units, and a set of 

simplified CMs and profile HMMs, each modeling a 

stem or a loop. 

In such a conformational graph H, each vertex 

represents a contiguous sequence segment, either a loop 

or one of the two half-stems. It is a mixed graph 

containing both directed and undirected edges. Each 
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directed edge connects two neighboring sequence 

segments, i.e. one of base-pairing stem regions and one 

loop region, and each undirected edge connects two 

base-paired sequence segments that form a stem. Fig.1 

shows one example of a pseudoknot structure and the 

corresponding conformational graph, H (Fig.1(a)). 

Searching in a target genome for a profiled structure 

consists of sliding a window of appropriate size along 

the target genome and aligning the structure model to a 

target sequence. Technically, the sequence segment 

within each window is preprocessed to identify the top k 

candidates for all CM models. Given the set of 

candidates of all profiled stems in the structure, a 

candidate graph can be constructed similarly to the 

construction of a conformational graph. Based on this 

construction, each vertex u in the conformation graph 

can only be mapped to a specific set of the same number 

of vertices in the candidate graph G, each of which is 

called a candidate of the vertex u. 

2.2.   Homomorphism for Structural 

Variation 

 
(a) A pseudoknot structure and the corresponding conformational graph, H 

 
(b) Graph homomorphism from H to query sequence, Q, which deletes stem(3, 7) from H. 

 
(c) Graph homomorphism from H to query sequence, Q, which deletes one pseudoknot 

structure stem(3, 7)&stem(5, 9) from H. 

Fig. 1. Graph homomorphism from H to query sequence Q. 

The optimal structure-sequence alignment between the 

structure model and the target sequence thus 

corresponds to finding, in the candidate graph, a 

maximum weighted subgraph that is homomorphic to 

the conformational graph. The weight is defined by the 

alignment score between vertices (stems and loops), in 

the conformational graph, and their counterparts, in the 

candidate graph. This graph homomorphism problem is 

an NP-hard problem
13

, but tree decomposition based 

dynamic programming allows achieving efficiency for 

the computation
16

.  

To handle structure variations, the deletions 

allowed on the profile graph H can be classified into the 

following two categories. 

(a) Deletion of a stem, which removes the base 

pairing between the two involved sequence segments. 

As shown in Fig.1(b), stem (3, 7) will be deleted from 

profile graph H. The homomorphic mapping merges 

vertex 3 (i.e., one arm of the stem), and its neighboring 

vertices, 2 and 4 (i.e., both loops), into one vertex, 

3’(i.e. a loop). Similarly, it merges vertex 7, and its 

neighboring vertices, 6 and 8, into one vertex, 7’, in 

query sequence, Q. 

(b) Deletion of a substructure,consisting of more 

than one stem, e.g., a pesudoknot structure, by applying 

(a) repeatedly. As shown in Fig.1(c), the pseudoknot 

structure contains stem (3, 7) and stem (5, 9) and loop 4, 

6 and 8. To delete this pseudoknot structure, the first 

step is to delete stem (3, 7), which is to merge vertices 2, 

3, 4 into vertex 3’ and to merge vertices 6, 7, 8 into 

vertex 7’. The second step is to delete stem (5, 9), which 

is to merge 3’, 5, 7’ into vertex 5’ and merge vertices 9, 

10 into vertex 9’ since 7’ has been used. 

The homomorphism used in this work is somewhat 

non-standard, as all operations need to meet the standard 

definition of graph homomorphism on vertices 

representing base-pairing regions only and not for  

vertices representing loops. In particular, edge 

preserving properties through homomorphism only 

apply to edges formed between vertices that represent 

base pairing regions and contribute to stems.   

2.3.   Structure-Sequence Alignment 

An alignment between a structure profile and a target 

sequence is essentially a homomorphism between the 

conformational graph H for the structure profile and 

some subgraph of the candidate graph G constructed 

from the target sequence. Generally, RNAv follows the 

basic idea of tree decomposition-based dynamic 

programming to compute the optimal alignment between 

graph H and the subgraph of G
16

. To consider structural 
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variation, one special stem candidate, NULL stem, will 

be added to the candidates of every stem model in the 

profile. For each tree node, the algorithm examines all 

possible combinations of the candidates including the 

NULL stem candidate, from the number 0 to the number 

max_NULL_stem, in the tree node (where 

max_NULL_stem is the maximum number of NULL 

stems). Thus, the optimal alignment will consider all 

k+1 candidates for every stem in the tree decomposition 

based dynamic programming. For each tree node, the 

optimal alignment score and the number of NULL stems 

(which can be technically constrainted) will be saved. 

The final optimal alignment score will be obtained in the 

tree root and a recursive process can be applied to trace 

back the optimal alignment. In this way, RNAv places a 

limit to the maximum number of NULL stems, 

max_NULL_stem, making it possible to identify from 

the target genome to RNAs conforming to the profiled 

structure but with possible structural variation from the 

consensus. 

3.   EVALUATION 

The newly introduced methods have been implemented 

into the search program, RNAv, which has been tested 

in different gcc version 3.4.6, 4.2.1 and 4.4.1. We 

collected Infernal’s benchmark dataset (51 ncRNA 

families) from RFAM seed alignment database (release 

9.1) and tested them on the following four programs: 

Infernal (1.0.2), trCYK (Infernal can be accessed from 

http://infernal.janelia.org/ and trCYK is one of Infernal’s 

functions), RNAv and RNATOPS, where trCYK is a 

new function of Infernal for local alignment to search 

for structure on incomplete query sequence, and 

RNATOPS is an earlier version of our program that 

allows little and small structural variation. This section 

will evaluate the performance of RNAv using Infernal’s 

performance as a reference. Due to page limitation, we 

have to move some of tables and figures to the 

appendix. We also created a webpage 

(http://www.cs.uga.edu/~zhibin/csb2010_RNAv_data.ht

ml) containing all the tested data results for this paper. 

3.1.   Data preparation and Evaluation 

criteria 

Infernal’s benchmark datasets do not contain any 

sequence pair that is more than 60% identical
8,9

. Each 

data set is a multiple structure alignment including the 

annotation of the consensus structure. We used each 

data set as training data to construct a structure profile 

for search. For the purpose of testing the recognition 

capability, we designed the following leave-one-out, 

pseudo-genomic searches: we followed a cross-

validation approach and embedded each RNA sequence, 

which was removed from the training alignment, in the 

middle of a 2000-nucleotide-long random sequence, 

which shares the same nucleotide frequency as that RNA 

sequence. The remaining alignment sequences were 

used as the training set for a search on that pseudo-

genome. We applied both an HMM filtering method
34, 35

 

(Infernal also uses QDB-filtering method
8
 and the non-

filtering method to the pseudo-genome test. 

There are two levels of search performance. The 

first level is to compare the predicted position of the 

tested RNA with its real position on the searched 

 
Fig. 3. Comparison of position prediction among Infernal, trCYK and RNAv. 
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genome. The second level is to compare the predicted 

structure with its real structure. For position comparison, 

we used the percentage ratio of overlap, between the real 

RNA sequence and the predicted one, with different 

thresholds (0.75, 0.8, 0.85, 0.9 and 0.95). Position 

performances of these search programs with these 

different thresholds are shown in Appendix-Fig. 2. In 

this section, we analyzed the results with the threshold 

of 0.85. 

In these 51 datasets, 9 of them contain pseudoknots. 

Since Infernal does not explicitly predict pseudoknot 

structures, we remove the crossing stems from those 

pseudoknot structures when testing them on Infernal and 

trCYK. On all programs, the top one hit candidate 

reported was taken as the prediction. 

3.2.   Position Search accuracy 

The search position accuracy comparisons between 

Infernal, trCYK and RNAv are shown in Fig. 3 and 

Appendix-Table 1. Infernal has the highest average 

position prediction performance, 97.51% using the 

filtering method and 97.67% in the non-filtering method. 

RNAv gets 93.70% in the filtering method and 93.73% 

in the non-filtering method, followed by trCYK, which 

gets the accuracy, 89.28%. However, in 10 datasets, 

RNAv’s filtering-search appears to perform better than 

Infernal and in 7 datasets its non-filtering-search 

performance is better than Infernal. We focus on 

analysis between the results of Infernal and of RNAv as 

trCYK, local motif search function, may not be entirely 

appropriate for detecting global structure with missing 

substructures. 

3.3.   Capability to detect structural 

variation 

We analyze the capability of RNAv in detecting 

structural variation by examining those cases that missed 

by Infernal. There are 10 such datasets, for which 

RNAv’s filtering search performance was better than 

Infernal and 7 datasets, for which RNAv’s non-filtering 

search performance is better than Infernal (we labeled 

these 17 dataset in bold font in Appendix-Table 1). Due 

to the page limitation, we picked 4 structure prediction 

typical cases to analyze: RF00023(Bacterial tmRNA) 

from the filtering-search test, and RF00024(Telomerase-

vert), RF00029(Intron_gpII) and RF00230(T-box), from 

the non-filtering-search test. 

3.3.1.   RF00023 Bacterial tmRNA 

RF00023, Bacterial tmRNA, has 228 training sequences, 

and the length of sequences in this alignment file ranges 

from 235 to 436, and its standard deviation is 26.35. We 

also calculated the pseudo-energy score for all the stems, 

and used the threshold of -4.0 to estimate, in the original 

alignment file, the number of good/NULL/weak stems 

(Appendix-Table 3). 

Test result (Appendix-Table 2) shows that, in this 

dataset, RNAv found all of stems, and Infernal missed 4 

cases (with the index of sequence 98/212/219/225 in the 

alignment file). Checking the 4 cases Infernal missed 

revealed that most of interior stems in these 4 

alignments are weak stems while the outer stems are 

good stems. 

We also calculated the number of NULL stem in the 

original alignment and candidate hit alignment 

(Appendix-Table 4, Table 5). There are 77 NULL stems 

in this RF00023 alignment file, and RNAv finds 30 of 

them. Actually RNAv detects 216 NULL stems, 30 of 

them are real NULL stem in the original alignment, and 

186 of them were used to predict weak stems that are 

100 in number (Here we used -4.0 as the threshold of 

pseudo-energy score to determine weak stems). For the 

other 47 real NULL stems, RNAv detected real stems 

for them and 25 of them are good stems. We show the 

 
Fig. 4. Alignment of case-98 in the RF00023 dataset (x-axis is the position of nucleotide in the pseudogenome, arc with dash-line 

means NULL stem. Same for all other figures). 
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test result of the 98
th

 query sequence as an example to 

explain RNAv’s performance discussed here. 

In this case, RNAv detected stem N/L/E/M and 

NULL stem H correctly (Fig. 5); for stem A/B/C/I/D, 

actually in the original alignment these stems are very 

weak (Fig. 4), containing many non-canonical base-

pairings, and RNAv predicted the candidates with lower 

pseudo-energy score; for stem K/J/F/G, RNAv could not 

find the candidates for them and used NULL stems to 

represent these two stems (see Appendix-Tables 4 and 

5). 

3.3.2.   RF00024 Telomerase-vert 

RF00024, Telomerase-vert, has 37 training sequences. 

The length of sequences in this alignment file ranges 

from 382 to 559, and its standard deviation is 38.21. We 

also estimate, in the original alignment file, the number 

of good/NULL/weak stems (see Appendix-Table 6). 

Test result (Appendix-Table 2) shows that, in this 

dataset, RNAv missed 1 case, and Infernal missed 2 

cases. We checked those missed cases of RNAv and 

Infernal. For the one missed case, RNAv only detected 

part of the whole structure correctly, resulting in the 

overlap region not large than 85%. For those two missed 

cases, Infernal detected local hit, 12.23% and 27.7% of 

the whole structure hit respectively. 

We compute the number of NULL stems in the 

original RF00024 alignment and candidate hit alignment 

(Appendix-Table 7, Table 8). Totally there are 26 

NULL stems in this RF00024 alignment file, and RNAv 

finds 9 of them. The total number of NULL stems in the 

 
Fig. 5. Alignment of RNAv’s result of case-98 in the RF00023 dataset, arc in red color means some difference from the original 

one. Same for all other figures. 

 
Fig. 6. Alignment of case-22 in the RF00024 dataset (x-axis is the position of nucleotide in the pseudogenome). 

 
Fig. 7. Alignment of RNAv’s result of case-22 in the RF00024 dataset. 

 
Fig. 8. Alignment of Infernal’s result of case-22 in the RF00024 dataset. 
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candidate hits are 66, and RNAv uses 57 NULL stems to 

replace weak stems and 9 of them are real weak stems. 

For example, in this test of the 22
nd

 query sequence, 

there are total 17 stems and15 of them are real stems. 

RNAv found (Fig.7) those two NULL stems, Stem F/E 

correctly. For those 15 real stems, RNAv detected 12 of 

them correctly, and 3 of them mostly correct but with 

some nucleotides shifted. Infernal (Fig.8) found a 

candidate for Stem F/E, which was actually no sequence 

in the original alignment, and some nucleotides shifted 

in the candidate stem of K. 

3.3.3.   RF00029 Intron_gpII 

RF00029, Intron_gpII, has 113 training sequences. The 

length of sequences in this alignment file ranges from 61 

to 154, and its standard deviation is 22.03. We also 

estimate, in the original alignment file, the number of 

good/NULL/weak stems (Appendix-Table 9). 

Test result (Appendix-Table 2) shows that, in this 

dataset, RNAv missed 1 case, and Infernal missed 7 

cases. 

We now use the test of the 98
th

 query sequence as 

an example to explain the performance difference 

between RNAv and Infernal. We checked the original 

alignment file and found there was a special stem C that 

had a big sequence variation within its loop region. 

RNAv and Infernal both predicted the first two stems, 

Stem A/B, correctly. For the last stem, Stem C, RNAv 

found one candidate stem with a lower pseudo-energy 

score than the real one, while Infernal found one 

candidate stem with a higher pseudo-energy score (Fig.9, 

Fig.10, Fig.11). However, RNAv failed in the one with 

the largest sequence variation. Infernal only outputted 

local structure search results for those 7 missed cases. 

 
Fig. 9. Alignment of case-98 in the RF00029 dataset (x-axis is 

the position of nucleotide in the pseudogenome) 

 

 

 
Fig. 10. Alignment of RNAv’s result of case-98 in the 

RF00029 dataset 

 
Fig. 11. Alignment of Infernal’s result of case-98 in the 

RF00029 dataset 

3.3.4.   RF00230 T-box 

RF00230, T-box, has 65 training sequences. The length 

of sequences in this alignment file ranges from 167 to 

370, and its standard deviation is 32.86. We also 

estimate, in the original alignment file, the number of 

good/NULL/weak stems (Appendix-Table 12). 

We checked the original alignment file and found 

there was a loop region, between Stem G and Stem H, 

which has a big sequence variation. RNAv missed 2 

cases, outputting only local structure hits, so did Infernal 

in those missed 6 cases (Appendix-Table 2). 

Here we analyzed the test result with the 26
th

 query 

sequence. In this test, RNAv found most of the real 

stems correctly, and found Stem E with both sides 

having a position shift, and used a NULL stem to 

replace Stem C, which actually had high pseudo-energy 

score in the original alignment file. Interestingly, RNAv 

and Infernal both found the same candidate for Stem H, 

which was different the one in the original alignment, 

but Infernal could not find Stem I. 

 
Fig. 12. Alignment of case-26 in the RF00230 dataset (x-axis 

is the position of nucleotide in the pseudogenome) 
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Fig. 13. Alignment of RNAv’s result of case-26 in the 

RF00230 dataset 

 
Fig. 14. Alignment of Infernal’s result of case-26 in the 

RF00230 dataset 

3.4.   RNAv Vs. RNATOPS 

One of problems in RNATOPS is if heuristic 

preprocessing step does not include the real candidate of 

the stem in those k pairs of candidate regions for each 

individual stem, then it may fail
16

. Actually this was the 

original motivation of proposing NULL stem technique. 

We used RNATOPS to repeat RNAv’s filtering search 

test, and see how much improvement RNAv can make 

using NULL stem technique. Test result shows that 

RNAv can improve about 16% of accuracy in filtering 

method and 13% in non-filtering method. 

3.5.   Analysis of RNAv’s parameters 

There are two parameters in RNAv. One is k, the 

number of stem candidates; the other is 

max_NULL_stem, the maximum number of NULL 

stems. In general, the values of these parameters are 

determined by the training data. When sequences in the 

alignment are conserved, a small value for k can yield 

decent search accuracy and larger values for k may 

further improve/fine-tune search results.  On the other 

hand, if the data manifest some significant structural 

variation, the search accuracy may not be substantially 

improved by simply increasing values for k; while 

parameter, max_NULL_stem, affects the search result. 

4.   DISCUSSION 

In this paper, we presented preliminary results from our 

on-going research in developing a new profiling 

framework for RNA secondary structure search for 

distant homologs. The new method profiles substantial 

structural variation with the conformational graph we 

previously developed; the newly introduced graph 

homomorphic mapping rules and the NULL stem 

technique make it possible to effectively detect 

substantial structure variation, typically stems missing in 

the structure because of evolution. Evident by the test 

results, the implemented program, RNAv, had 

comparable overall performance as Infernal on the 51 

benchmark data sets selected and used for testing 

Infernal. RNAv was able to detect some structural 

variations that were missed by Infernal. Overall 

impression from the tests is that RNAv works for 

ncRNA search with diversed sequences while Infernal 

works with conserved ncRNA sequences. The 

comparison between RNAv with the earlier version 

RNATOPS shows an overall enhancement in 

performance, with more than 13% of accuracy 

improvement (Appendix, Fig. 2). The same table also 

shows the performance of trCYK, a new local alignment 

algorithm for Infernal that can locally aligns the 

structural model with incomplete sequences. Our result 

shows that local motif search techniques may not be 

entirely appropriate for detecting global structure with 

missing substructures. 

In addition to the capability of handling 

pseudoknots and the search efficiency inherited from 

RNATOPS
16

, there are a couple of more advantages 

demonstrated by RNAv. One is RNAv's capability to 

suppress some impact of noisy training data. Profile-

based search algorithms can be inherently alignment-

sensitive. If more than 50% of a stem alignment contains 

canonical base pairs and others are non-canonical base 

pairs, then the stem modeling based on this alignment 

will be correct. When this correct model is used to 

predict those non-canonical base pairs, the score of 

searched stem candidates will be insignificant. In this 

scenario, RNAv may use NULL stem as the predicted 

local structure when all possible stem candidates are 

“too weak” to be meanful. This explains the reason why 

Infernal missed those 4 cases with interior weak stems 

and outer good stems in Bacterial tmRNA data set while 

RNAv found them. 

Another interesting advantage of RNAv is its 

potential for detection of evolutionary structural 

changes. In testing the 51 data sets, RNAv was able to 

detect at least 34% or more regions with missing stems 

in each data set. These regions are presumably to have 

evolved to unpaired loop regions instead to base pairing 

stem regions or drastic mutations have caused stems in 

these regions to disappear. Therefore, RNAv may 

present as a technical solution to the issue of modeling 
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stem evolution including insertion or deletion. One can 

apply RNAv to search for an ncRNA of interest across 

species, which may not be conserved in the structure, 

leading to the discovery of new members of the RNA, 

possibly in evolutionarily distant species. 

Graph homomorphic mapping appears to be 

powerful to account for ncRNAs structure evolution. 

Together with the structure evolution study
35

 on specific 

ncRNAs and the notion of graph homomorphic mapping 

to define stem insertion and deletion, RNAv and the 

underlying method will be further developed into an 

accurate solution to detecting distant structural 

homologs. 
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5.   APPENDIX 

Table 1. Comparison of filtering/nonfiltering search accuracy among Infernal, trCYK and RNAv(ratio_threshold=0.85) 

RFAM_id RNA_name 
No. of total training 

sequences 

Infernal RNAv 

Filtering NonFiltering with trCYK Filtering NonFiltering 

RF00002 5_8S_rRNA 62 100.00% 100.00% 90.32% 95.16% 95.16% 

RF00003 U1 100 99.00% 100.00% 97.00% 97.00% 100.00% 

RF00004 U2 212 96.70% 96.70% 90.09% 95.75% 96.23% 

RF00005 tRNA 1052 95.91% 99.62% 91.16% 94.77% 98.48% 

RF00008 Hammerhead_3 84 98.81% 98.81% 94.05% 86.90% 91.67% 

RF00009 RNaseP_nuc 122 98.36% 98.36% 85.25% 95.08% 95.90% 

RF00010 RNaseP_bact_a 306 100.00% 100.00% 99.67% 99.67% 89.87% 

RF00011 RNaseP_bact_b 115 99.13% 99.13% 100.00% 100.00% 100.00% 

RF00012 U3 27 100.00% 100.00% 100.00% 88.89% 92.59% 

RF00015 U4 184 92.39% 92.39% 80.98% 89.67% 91.30% 

RF00017 SRP_euk_arch 104 97.12% 100.00% 98.08% 100.00% 100.00% 

RF00018 CsrB 14 100.00% 100.00% 100.00% 100.00% 100.00% 

RF00019 Y 127 100.00% 100.00% 97.64% 100.00% 100.00% 
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RF00020 U5 184 94.57% 95.11% 71.74% 95.11% 95.11% 

RF00023 tmRNA 228 98.25% 99.12% 99.56% 100.00% 98.25% 

RF00024 Telomerase-

vert 

37 91.89% 94.59% 100.00% 97.30% 97.30% 

RF00025 Telomerase-cil 24 91.67% 91.67% 91.67% 100.00% 95.83% 

RF00028 Intron_gpI 30 80.00% 80.00% 56.67% 60.00% 53.33% 

RF00029 Intron_gpII 113 93.81% 93.81% 88.50% 98.23% 99.12% 

RF00030 RNase_MRP 89 93.26% 98.88% 97.75% 84.27% 94.38% 

RF00031 SECIS 61 100.00% 100.00% 86.89% 100.00% 100.00% 

RF00033 MicF 4 100.00% 100.00% 100.00% 75.00% 75.00% 

RF00037 IRE 39 100.00% 100.00% 87.18% 92.31% 100.00% 

RF00040 rne5 6 83.33% 83.33% 83.33% 83.33% 83.33% 

RF00054 U25 8 100.00% 100.00% 87.50% 87.50% 100.00% 

RF00055 snoZ37 9 100.00% 100.00% 88.89% 100.00% 88.89% 

RF00059 THI 118 98.31% 98.31% 77.97% 93.22% 95.76% 

RF00066 U7 47 100.00% 100.00% 80.85% 95.74% 85.11% 

RF00067 U15 18 100.00% 100.00% 88.89% 94.44% 88.89% 

RF00080 yybP-ykoY 25 100.00% 100.00% 92.00% 88.00% 88.00% 

RF00096 U8 49 100.00% 100.00% 93.88% 100.00% 100.00% 

RF00101 SraC_RyeA 13 100.00% 100.00% 100.00% 100.00% 100.00% 

RF00104 mir-10 11 100.00% 100.00% 72.73% 81.82% 100.00% 

RF00114 S15 80 98.75% 98.75% 86.25% 95.00% 96.25% 

RF00163 Hammerhead_1 75 98.67% 98.67% 82.67% 98.67% 98.67% 

RF00165 Corona_pk3 14 100.00% 100.00% 100.00% 92.86% 100.00% 

RF00167 Purine 133 99.25% 99.25% 76.69% 100.00% 100.00% 

RF00168 Lysine 47 100.00% 100.00% 97.87% 97.87% 97.87% 

RF00169 SRP_bact 468 99.15% 98.93% 85.47% 98.29% 98.07% 

RF00170 msr 10 90.00% 80.00% 60.00% 70.00% 80.00% 

RF00174 Cobalamin 439 97.72% 97.72% 80.41% 98.86% 99.09% 

RF00177 SSU_rRNA_5 341 96.19% 97.07% 98.24% 95.89% 42.82% 

RF00206 U54 22 100.00% 100.00% 95.45% 100.00% 100.00% 

RF00213 snoR38 19 100.00% 100.00% 78.95% 94.74% 100.00% 

RF00230 T-box 65 90.77% 90.77% 100.00% 96.92% 96.92% 

RF00234 glmS 18 100.00% 100.00% 100.00% 94.44% 94.44% 

RF00373 RNaseP_arch 72 100.00% 100.00% 100.00% 95.83% 93.06% 

RF00379 ydaO-yuaA 106 100.00% 100.00% 90.57% 87.74% 97.17% 

RF00380 ykoK 96 100.00% 100.00% 98.96% 100.00% 100.00% 

RF00448 IRES_EBNA 6 100.00% 100.00% 66.67% 100.00% 100.00% 

RF00504 gcvT 53 100.00% 100.00% 84.91% 92.45% 96.23% 

Avg   97.51% 97.67% 89.28% 93.70% 93.73% 
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Fig. 2. Comparison of search accuracy of Infernal, trCYK, RNAv and RNATOPS in nonfiltering method 

Table 2. Search results of RNAv and Infernal on RF00023/ RF00024/RF00029/RF00230 dataset. 

 RF00023 RF00024 RF00029 RF00230 

 RNAv Infernal RNAv Infernal RNAv Infernal RNAv Infernal 

Number of Training Sequences 227 227 36 36 112 112 64 64 

Filter Used HMM HMM/QDB N/A N/A N/A N/A N/A N/A 

Number of NULL stem 5 N/A 5 N/A 5 N/A 5 N/A 

Number of Genomes Searched 228 228 37 37 113 113 65 65 

Accuracy 100% 98.25% 97.3% 94.59% 99.12% 93.81% 96.92% 90.77% 

Table 3. Statistics of stems in RF00023 alignment 

Stem Id N L K J A E F B G C I H D M 

Good Stem 214 217 63 224 195 191 153 189 115 178 117 131 179 212 

Null Stem 14 0 0 2 9 4 0 1 2 10 7 7 5 16 

Weak Stem 0 11 165 2 24 33 75 38 111 40 104 90 44 0 

Table 4. Statistics of NULL stem in the RF00023 alignment and candidate hit alignment 

Stem Id N L K J A E F B G C I H D M  

The original alignment file 14 0 0 2 9 4 0 1 2 10 7 7 5 16 77 

Candidate 13 2 19 6 34 15 18 16 24 6 10 45 5 3 216 

Real NULL stem in candidate 12 1 10 0 16 8 9 6 16 6 6 34 3 3 130 

Table 5. Summary of stem and NULL stem in RF00023 alignment and candidate hit alignment 

 Stem NULL stem 

The original alignment file 2976 77 

Candidate 2345 30 

Sensitivity 78.8% 42.86% 
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Table 6. Statistics of the stems in RF00024 alignment 

Stem Id F E D C B A M L K J H G I Q P O N 

Good 

Stem 

32 27 22 33 37 37 37 34 37 36 37 29 37 34 35 37 35 

Null Stem 4 4 13 0 0 0 0 2 0 0 0 3 0 0 0 0 0 

Weak 

Stem 

1 6 2 4 0 0 0 1 0 1 0 5 0 3 2 0 2 

Table 7. Statistics of the NULL stem in RF00024 alignment and candidate hit alignment 

Stem Id F E D C B A M L K J H G I Q P O N  

Original sequence 4 4 13 0 0 0 0 2 0 0 0 3 0 0 0 0 0 26 

Candidate hit 8 8 3 5 1 2 0 1 11 0 1 6 0 1 11 6 2 66 

Real NULL stem in candidate 5 3 3 0 0 0 0 1 0 0 0 4 0 1 1 0 0 18 

 

Table 8. Summary of stem and NULL stem in RF00024 

alignment and candidate hit alignment  Table 9. Statistics of the stems in RF00029 alignment 

 Stem NULL stem  Stem Id B A C 

The original alignment file 563 26  Good Stem 112 97 74 

Candidate 271 9  Null Stem 0 0 0 

Sensitivity 48.13% 34.6%  Weak Stem 1 16 39 

 

Table 10. Statistics of the NULL stem in RF00029 

alignment and candidate hit alignment 

 

Table 11. Summary of stem and NULL stem in 

RF00029 alignment and candidate hit alignment 

Stem Id B A C   Stem NULL stem 

Original sequence 0 0 0  Alignment 339 0 

Candidate hit 0 0 0  Candidate 292 0 

Real NULL stem in candidate 0 0 0  Sensitivity 86.14% N/A 

Table 12. Statistics of the stems in RF00230 alignment 

Stem Id E D C B A F G H I 

Good Stem 51 0 17 8 65 48 47 64 65 

Null Stem 0 0 0 0 0 6 9 1 0 

Weak Stem 14 65 48 57 0 11 9 0 0 

 

Table 13. Statistics of the NULL stem in RF00230 alignment and candidate hit 

alignment 

 

Table 14. Summary of stem and NULL stem in 

RF00230 alignment and candidate hit alignment 

Stem Id E D C B A F G H I    Stem NULL stem 

Original sequence 0 0 0 0 0 6 9 1 0 16  Alignment 553 16 

Candidate hit 4 2 7 0 0 5 6 7 1 32  Candidate 369 10 

Real NULL stem in candidate 2 2 6 0 0 4 6 1 0 21  Sensitivity 66.73% 62.5% 
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