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Pathways show how different biochemical entities interact with each other to perform vital functions for the survival
of organisms. Similarities between pathways indicate functional similarities that are difficult to identify by comparing
the individual entities that make up those pathways. When interacting entities are of single type, the problem of
identifying similarities reduces to graph isomorphism problem. However, for pathways with varying types of entities,
such as metabolic pathways, alignment problem is more challenging. Existing methods, often, address the metabolic
pathway alignment problem by ignoring all the entities except for one type. This kind of abstraction reduces the
relevance of the alignment significantly as it causes losses in the information content. In this paper, we develop a
method to solve the pairwise alignment problem for metabolic pathways. One distinguishing feature of our method
is that it aligns reactions, compounds and enzymes without abstraction of pathways. We pursue the intuition that
both pairwise similarities of entities (homology) and their organization (topology) are crucial for metabolic pathway
alignment. In our algorithm, we account for both by creating an eigenvalue problem for each entity type. We enforce
the consistency by considering the reachability sets of the aligned entities. Our experiments show that, our method
finds biologically and statistically significant alignments in the order of seconds for pathways with ∼ 100 entities.
Keywords: metabolic pathway alignment, metabolic reconstruction, alternative enzyme identification

1. INTRODUCTION

One of the fundamental goals of biology is to under-
stand the biological processes that are the driving
forces behind organisms’ functions. To achieve this
goal, interactions between different components that
build up metabolism should be examined in detail.
These interactions can reveal significant information
that is impossible to gather by analyzing individual
entities. Recent advances in high throughput tech-
nology resulted in an explosion of different types of
interaction data which is compiled in databases, such
as KEGG1 and EcoCyc2. Analyzing these databases
is necessary to capture the valuable information car-
ried by the pathways. An essential type of analysis
is the comparative analysis which aims at identifying
similarities between pathways of different organisms.
Finding these similarities provides valuable insights
for drug target identification3, metabolic reconstruc-
tion of newly sequenced genome4, and phylogenetic
tree construction5.

To identify similarities between two pathways, it
is necessary to find a mapping of their entities. This
problem is computationally interesting and challeng-
ing. Using a graph model for representing path-
ways, the graph/subgraph isomorphism problems
can be reduced to global/local pathway alignment

problems in polynomial time. However, since the
graph and subgraph isomorphism problems are GI-
complete and NP-complete respectively, global/local
pathway alignment problems are GI/NP complete.
Hence, efficient heuristics are needed to solve these
problems in a reasonable time.

In order to reduce the time complexity of the
alignment, some existing algorithms restrict the
topology of query pathways6, 7. For instance, the
method proposed by Tohsato et al.7 works for only
non-cyclic pathways, whereas the algorithm of Pinter
et al.8 restricts the query pathways to multi-source
trees. However, those restrictions are far from the re-
ality and they limit the applicability of the methods
to only a small percentage of pathways.

A common delusion of existing algorithms for
metabolic pathway alignment is to use a model that
focuses on only one type of entity and ignores the
others. This simplification converts metabolic path-
ways to the graphs with only compatible nodes. We
use the word compatible for the entities that are of
the same type. For metabolic pathways, two enti-
ties are compatible if they both are reactions or en-
zymes or compounds. We term the conversions that
reduces the metabolic pathways to compatible enti-
ties as abstraction. Previously, reaction based5, en-
zyme based8, 9 and compound based7 abstractions
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are used for representing metabolic pathways. Fig-
ure 1 illustrates the problems with the enzyme based
abstraction used by Pinter et al.8 and Koyutürk et
al.9. In Figure 1(a), enzymes E1 and E2 interact
on two different paths. Abstraction in Figure 1(b)
loses this information and merges these two paths
into a single interaction. After the abstraction, an
alignment algorithm aligning the E1 → E2 interac-
tions in Figures 1(a) and 1(b) cannot realize through
which path, out of two alternatives, the enzymes E1

and E2 are aligned. It is important to note that the
amount of information lost due to abstraction grows
exponentially with the number of branching entities.

(a)

(b)

Fig. 1. Top figures in (a) and (b) illustrate two hypotheti-
cal metabolic pathways with enzymes and compounds repre-
sented by letters E and C, respectively. Bottom figures in (a)
and (b) show the same pathways after abstraction when the
compounds are ignored.

This paper addresses the pairwise alignment
problem for metabolic pathways without any topol-
ogy restriction or any abstraction. A distinguishing
feature of our method is that reported alignments
provide the individual mappings for reactions, com-
pounds and enzymes. Furthermore, our algorithm
can be extended to work for other pathway types that
have entities from different compatibility classes.

In our method, we account for both pairwise and
topological similarities of the entities since they both
are very crucial for alignment. Singh et al.10 com-
bined homology and topology for protein interaction
pathway alignment by creating an eigenvalue prob-
lem. A similar approach is previously used for dis-

covery of authoritative information sources on the
World Wide Web by Kleinberg11. In the case of
protein interaction pathways, the alignment prob-
lem can be mapped to a single eigenvalue problem
since all nodes are of the same type and interactions
between them are assumed to be undirected. The
algorithm proposed by Singh et al., however, cannot
be trivially extended to metabolic pathways as these
pathways contain entities of varying types and the
interactions are directed.

For metabolic pathway alignment, we first create
three eigenvalue problems, one for compounds, one
for reactions and one for enzymes. We, also, con-
sider the directions of interactions. We solve these
eigenvalue problems using power method. The prin-
cipal eigenvectors of each of these problems define a
weighted bipartite graph. We, then, extract reaction
mappings using maximum weight bipartite matching
on the corresponding bipartite graph. After that, to
ensure consistency of the alignment, we prune the
edges in the bipartite graphs of compounds and en-
zymes which lead to inconsistent alignments with re-
spect to reaction mappings. Finally, we find the en-
zyme and the compound mappings using maximum
weight bipartite matching. We report the extracted
mappings of entities as an alignment together with
a similarity score that we devise for measuring the
similarity between the aligned pathways. Further-
more, we measure the unexpectedness of the result-
ing alignment by calculating its z-score.

Our experiments on KEGG Pathway database
show that our algorithm successfully identifies func-
tionally similar entities and sub-paths in pathways
of different organisms. Our method produces biolog-
ically and statistically significant alignments of path-
ways very quickly.

Our Contributions:
• We introduce the consistency concept for align-

ment of pathways with different entity types by con-
structing reachability sets. We develop an algorithm
that aligns pathways while enforcing consistency.

• We integrate the graph model that we devised
earlier3 into the context of pathway alignment. Using
this model, we develop an algorithm to align path-
ways when there is no abstraction. Unlike existing
graph models, this model is a nonredundant repre-
sentation of pathways without any abstraction.
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• We introduce a new scoring scheme for mea-
suring the similarity of two reactions. We also devise
a similarity score and a z-score for measuring simi-
larities between two metabolic pathways.

The organization of the rest of this paper is as
follows: Section 2 discusses the related work. Sec-
tion 3 presents our graph model for representing
pathways. Section 4 describes the proposed algo-
rithm in detail. Section 5 illustrates the experimen-
tal results. Section 6 briefly concludes the paper.

2. BACKGROUND

Pathway alignment problem has been mostly con-
sidered for protein interaction networks (PPI). As a
result, existing methods often can align two path-
ways only if all the interacting entities are of the
same type6, 10, 12, 13. However, metabolic pathways
are composed of enzymes, reactions, compounds and
interactions between these three types of entities.
Therefore, it is not trivial how PPI alignment meth-
ods can be extended to align metabolic pathways.

For solving the metabolic pathway alignment
problem, existing methods model the pathways as in-
teractions between entities of a single type. This ab-
straction causes significant information loss as seen
in Figure 1. After this abstraction in modeling, a
common approach for aligning metabolic pathways
is to use graph theoretic techniques. Pinter et al.8

mapped the metabolic pathway alignment problem
to the subgraph homomorphism problem. How-
ever, they oversimplify the problem by restricting
the topology of pathways to multi-source trees. By
solely relying on Enzyme Commission (EC)14 num-
bers, Tohsato et al.15 proposed an alignment method
for metabolic pathways in 2003. Due to the dis-
crepancies in the EC hierarchy, the accuracy of this
method is questionable. In 2007, they proposed an-
other method7, which only considers chemical struc-
tures of compounds for alignment. This idea, how-
ever, totally ignores the effect of other entities such
as enzymes and reactions.

To overcome the above mentioned problems, in
this paper, we refuse to use a model that is biased
on one entity type. Equipped with a more compre-
hensive graph model without abstraction and an ef-
ficient iterative algorithm, our tool outperforms ex-
isting methods for metabolic pathway alignment.

3. MODEL

The first step in developing effective computational
techniques to leverage metabolic pathways is to de-
velop an accurate model to represent them. Existing
graph models are not sufficient for representing all
interactions between different entity types that are
present in metabolic pathways. Figure 1 emphasizes
the importance of the modeling scheme for pathway
alignment. As discussed in Section 2, abstractions
in modeling reduce the alignment accuracy dramat-
ically.

In order to address the insufficiency of existing
models, we developed a graph model for representa-
tion of metabolic pathways. Our model is a variation
of boolean network model and is able to capture all
interactions between all types of entities. We discuss
this model in the rest of this section.

For the rest of this paper, we will use P , R, C, E
to denote the sets of all pathways, all reactions, all
compounds and all enzymes, respectively. Let, R ⊆
R, C ⊆ C, E ⊆ E such that R = {R1, R2, . . . , R|R|},
C = {C1, C2, . . . , C|C|} and E = {E1, E2, . . . , E|E|}
denote the reactions, compounds and enzymes of the
pathway P , respectively. The definition below for-
malizes our graph model:

Definition 1. A directed graph, G(V, I) for repre-
senting the metabolic pathway P ∈ P , is constructed
as follows: The node set, V = [R, C, E], is the union
of reactions, compounds and enzymes of P . The edge
set, I, is the set of interactions between the nodes.
An interaction is represented by a directed edge that
is drawn from a node x to another node y, if and only
if one of the following three conditions holds:

1) x is an enzyme that catalyzes reaction y.
2) x is an input compound of reaction y.
3) x is a reaction that produces compound y.

Figure 2 illustrates the conversion of a KEGG
metabolic pathway to our graph model. As
suggested, our model is capable of representing
metabolic pathways without losing any type of enti-
ties or interactions between these entities. We avoid
any kind of abstraction in alignment by using this
model. Besides, our model is a nonredundant repre-
sentation of pathways since it represents each entity
using a single node.
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(a)

(b)

Fig. 2. Graph representation of metabolic pathways: (a)
A portion of the reference pathway of Alanine and aspartate
metabolism from KEGG database (b) Our graph representa-
tion corresponding to this portion. Reactions are shown by
rectangles, compounds are shown by circles and enzymes are
shown by triangles.

4. ALGORITHM

Motivated by previous research on alignment of path-
ways and growing demand on fast and accurate tools
for analyzing biological pathways, in this section
we describe our algorithm for pairwise alignment of
metabolic pathways. Before going into the details of
the algorithm, it is better to formally state the align-
ment problem. To do this we first need to define an
alignment and the consistency of an alignment.

Let, P, P̄ ∈ P stand for the two query metabolic
pathways which are represented by graphs G(V, I)
and Ḡ(V̄ , Ī), respectively. Using our graph formal-
ization V can be replaced by [R, C, E], where R de-
notes the set of reactions, C denotes the set of com-
pounds and E denotes the set of enzymes of P . Sim-
ilarly, V̄ is replaced by [R̄, C̄, Ē].

Definition 2. An alignment of two metabolic path-
ways P = G(V, I) and P̄ = Ḡ(V̄ , Ī), is a mapping
ϕ : V ′ → V̄ ′ where V ′ ⊆ V and V̄ ′ ⊆ V̄ .

(a)

(b)

Fig. 3. Consistency of an alignment and an example non-
sensical matching: Figures in (a) and (b) are graph represen-
tations of two query pathways. Enzymes are not displayed for
simplicity. Suppose that our alignment algorithm mapped the
reactions R1 to R1’ and R2 to R2’. In this scenario, a trivial
consistent matching is C1-C1’. An example for a nonsensical
matching that cause inconsistency is C2’ - C5. When C1 is
matched to C1’, a consistent matching might be C2’ - C4 since
they are inputs of two neighbor reactions.

Before arguing the consistency of an alignment, we
discuss the reachability concept for entities. Given
two entities vi, vj ∈ V which are compatible, vj is
reachable from vi if there is a directed path from vi

to vj in graph G. As a shorthand notation, vi ⇒ vj

denotes that vj is reachable from vi.
Using the definition and the notation above, we

define a consistent alignment as follows:

Definition 3. An alignment of two pathways P =
G(V, I) and P̄ = Ḡ(V̄ , Ī) defined by the mapping
ϕ : V ′ → V̄ ′ is consistent if and only if all the con-
ditions below are satisfied:

• For all ϕ(v) = v̄ where v ∈ V and v̄ ∈ V̄ , v

and v̄ are compatible.
• ϕ(v) is one-to-one.
• For all ϕ(vi) = v̄i, there exists ϕ(vj) = v̄j

where vi, vj ∈ V and v̄i, v̄j ∈ V̄ , such that vi ⇒ vj

and v̄i ⇒ v̄j , or vj ⇒ vi and v̄j ⇒ v̄i.

The first condition filters out matchings of dif-
ferent entity types. The second condition ensures
that none of the entities are mapped to more than
one entity. The last condition restricts the map-
pings to the ones which are supported by at least one
other mapping. Additionally, it eliminates nonsensi-
cal matchings that cause inconsistency as described
in Figure 3.

Now, let, SimPϕ : P × P → � ∩ [0, 1] be a
pairwise pathway similarity function, induced by the
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mapping ϕ. The maximum score, SimPϕ = 1, is
achieved when two pathways are identical. In Sec-
tion 4.5, we will describe in detail how SimPϕ is
computed after ϕ is created. In order to restate our
problem, it is only necessary to know that there ex-
ists such a similarity function for pathways.

Under the light of the above definitions and for-
malizations, here is the problem statement for pair-
wise metabolic pathway alignment:

Definition 4. Given two metabolic pathways, P =
G(V, I) and P̄ = Ḡ(V̄ , Ī), the alignment problem is
to find a consistent mapping ϕ : V → V̄ that maxi-
mizes SimPϕ(P, P̄ ).

In the following sections, we describe our algorithm
for metabolic pathway alignment.

4.1. Pairwise Similarity of Entities

Metabolic pathways are composed of entities which
are either enzymes, compounds or reactions. The
degree of similarity between pairs of entities of two
pathways is a good indicator of the similarity be-
tween these pathways.

A number of similarity measures have been de-
vised for each type of entity in the literature. In
the rest of this section, we describe the similarity
functions we used for enzyme and compound pairs.
We also discuss the similarity function we developed
for reaction pairs. All pairwise similarity scores are
normalized to the interval of [0, 1] to ensure compat-
ibility between similarity scores of different entities.
Enzymes: An enzyme similarity function is of the
form SimE : E × E → �∩ [0, 1]. In our implementa-
tion, the two options we provide the user for enzyme
similarity scoring are:

• Hierarchical enzyme similarity score15 depends
only on Enzyme Commission (EC)14 numbers of en-
zymes.

• Information content enzyme similarity score8

uses EC numbers of enzymes together with the in-
formation content of this numbering scheme.
Compounds: Two different methods we use for
compound similarity are:

• A trivial compound similarity score returns 1
if two compounds are identical and 0 otherwise.

• SIMCOMP compound similarity score for com-
pounds is defined by Hattori et al.16. This score is as-

sessed by mapping chemical structures of compounds
to graphs and then measuring the similarity between
these graphs.
Reactions: Our similarity score for reactions de-
pends on the similarities of the components that take
place in the reaction process such as enzymes, input
compounds and output compounds. It is of the form
SimR : R×R → � ∩ [0, 1]. Our reaction similarity
score employs the maximum weight bipartite match-
ing technique. The following is a brief description of
the maximum weight bipartite matching problem:

Definition 5. Let, U and V be two disjoint node
sets and S be a |U | × |V | matrix representing edge
weights between all possible pairs with one element
from U and one element from V, where existing
edges correspond to a nonzero entry in S. Maximum
Weight Bipartite Matching problem is to find a list
of node pairs, such that the sum of edge weights be-
tween the elements of these pairs is maximum. We
denote this sum of edge weights by MBS(U, V, S).

Let, Ri and Rj be two reactions from R. De-
fine Ri as a combination of input compounds, out-
put compounds and enzymes and denote it by
[CRi

in , CRi
out, E

Ri ], where CRi

in , CRi
out ⊆ C and ERi ⊆ E.

Similarly, define Rj as [CRj

in , C
Rj

out, E
Rj ]. Addition-

ally, compute the edge weight matrices SCout and
SCin using the selected compound similarity score
and SE using the selected enzyme similarity.

The similarity score of (Ri, Rj) is computed as:

SimR(Ri, Rj) = γCinMBS(CRi

in , C
Rj

in , SCin)

+ γCoutMBS(CRi
out, C

Rj

out, SCout)

+ γEMBS(ERi , ERj , SE) (1)

Here, γCin , γCout , γE denote the relative weights
of input compounds, output compounds and en-
zymes on reaction similarity, respectively. Typical
values for these parameters are γCin = γCout = 0.3
and γE = 0.4. These values are empirically deter-
mined after a number of experiments. One more
factor that defines reaction similarity is the choice
of SimE and SimC functions. Since we have two
options for each, we end up having four different op-
tions for reaction similarity depending on the choices
of SimE and SimC.

Now, we can create the pairwise similarity vec-

tors
−−→
HR

0,
−−→
HC

0,
−−→
HE

0 for reactions, compounds and
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enzymes, respectively. Since, calculation of these
vectors is very similar for each entity type we just
describe the one for reactions.

The entry HR
0((i − 1)|R| + j) of

−−→
HR

0 vector
stands for the similarity score between Ri ∈ R and
R̄j ∈ R̄, where 1 ≤ i ≤ |R| and 1 ≤ j ≤ |R̄|. We will

use the notation HR
0(i, j) for this entry since

−−→
HR

0

can, also, be viewed as a |R|× |R̄| matrix. One thing

we need to be careful about is that
−−→
HR

0,
−−→
HC

0,
−−→
HE

0

vectors should be of the unit norm. This normal-
ization is crucial for stability and convergence of our
alignment algorithm, as we will clarify in Section 4.2.

We, therefore, compute an entry of
−−→
HR

0 as:

HR
0(i, j) =

SimR(Ri, R̄j)

||
−−→
HR

0||1
(2)

In a similar fashion, we compute all entries of−−→
HC

0,
−→
HE

0 by using SimC and SimE functions, re-
spectively. We use these three vectors to carry the
homology information throughout the algorithm. In
Section 4.3, we will describe how they are combined
with topology information to produce an alignment.

4.2. Similarity of Topologies

Previously, we discussed why and how we use pair-
wise similarities of entities. However, although pair-
wise similarities are necessary, they are not sufficient.
The induced topologies of the aligned entities should
also be similar. In order to account for topologi-
cal similarity, in this section, we define the notion
of neighborhood for each compatibility class. After
that, we create support matrices that allow us to ex-
ploit this neighborhood information.

To be consistent with our reachability defini-
tion, we define our neighborhood relations accord-
ing to directions of interactions. In other words, we
distinguish between backward neighbors and forward
neighbors of an entity.

Let, BN(x) and FN(x) denote the backward
and forward neighbor sets of an entity x. We need
to show how to construct these sets for each entity
type. We start by defining neighborhood of reactions
to build backbones for topologies of the pathways.
Then, using that backbone we define neighborhood
concepts for compounds and enzymes.

Consider two reactions Ri and Rj of the path-
way P . If an output compound of Ri is an input

compound for Rj , then Ri is a backward neighbor of
Rj and Rj is a forward neighbor of Ri. We construct
the forward and backward neighbor sets of each re-
action in this manner. For instance, in Figure 2(b),
R02569 is a forward neighbor of R03270, and R03270
is a backward neighbor of R02569.

A more generalized version of neighborhood defi-
nition can be given to include not only instant neigh-
bors but also neighbors of neighbors, and so on.
However, it complicates the algorithm unnecessar-
ily, since our method already considers the support
of indirect neighbors as described in Section 4.3.

As stated before, neighborhood definitions of
compounds and enzymes depend on the topology
of reactions. Let, Ci and Cj be two compounds,
Rs and Rt be two reactions of the pathway P . If
Rs ∈ BN(Rt) and Ci is an input (output) compound
of Rs and Cj is an input (output) compound of Rt

then Ci ∈ BN(Cj) and Cj ∈ FN(Ci). For example,
in Figure 2(b), Lipoamide-E and Dihydro-lipoamide-
E are neighbors since they are inputs of two neighbor
reactions R02569 and R03270, respectively. For en-
zymes the construction is similar.

In the light of the above definitions, we create
support matrices for each compatibility class. These
matrices contain the information about topological
similarities of pathways. In here, we only describe
how to calculate the support matrix for reactions.
The calculations for enzymes and compounds is done
similarly.

Definition 6. Let, P = G([R, C, E], I) and P̄ =
Ḡ([R̄, C̄, Ē], Ī) be two metabolic pathways. The
support matrix for reactions of P and P̄ is a
|R||R̄| × |R||R̄| matrix denoted by AR. An entry
of the form AR[(i − 1)|R| + j][(u − 1)|R| + v] iden-
tifies the fraction of the total support provided by
Ru, R̄v matching to Ri, R̄j matching. Let, N(u, v) =
|BN(Ru)||BN(R̄v)|+|FN(Ru)||FN(R̄v)| denote the
number of possible neighbor matchings of Ru and R̄v.

Each entry of AR is computed as:

AR[(i − 1)|R| + j][(u − 1)|R| + v] =
⎧⎪⎪⎨
⎪⎪⎩

1
N(u,v) if (Ri ∈ BN(Ru) and R̄j ∈ BN(R̄v))

or (Ri ∈ FN(Ru) and R̄j ∈ FN(R̄v))

0 otherwise
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After filling all entries, we replace the zero
columns of AR with |R||R̄| × 1 vector [ 1

|R||R̄| ,
1

|R||R̄|
. . . , 1

|R||R̄| ]
T . This way support of the matching in-

dicated by the zero column is uniformly distributed
to all other matchings.

For example, in Figure 1(a), |BN(E2)| = 1 and
|FN(E2)| = 2 and in Figure 1(b), |BN(E2)| = 1
and |FN(E2)| = 1. Hence, the support of matching
E2 of Figure 1(a) with E2 of Figure 1(b) should be
equally distributed to its 3 (i.e. 1×1+2×1) possible
neighbor matching combinations by assigning 1/3 to
the corresponding entries of AE matrix.

We use the terms AR, AC and AE to represent
the support matrices for reactions, compounds and
enzymes, respectively. Power of these support ma-
trices is that, they allow us to distribute the support
of a matching to other matchings according to the
distances between them. This distribution is cru-
cial for favoring the matchings whose neighbors can
also be matched as well. The method for distribut-
ing the matching scores appropriately is described in
the next section.

4.3. Combining Homology and Topology

Both the pairwise similarities of entities and the or-
ganization of these entities together with the inter-
actions between them provide us precious informa-
tion about the functional correspondence and evolu-
tionary similarity of metabolic pathways. Hence, an
accurate alignment strategy needs to combine these
factors cautiously. In this subsection we describe our
strategy for achieving this combination.

From the previous sections, we have
−−→
HR

0,
−−→
HC

0,−−→
HE

0 vectors containing pairwise similarities of enti-
ties and AR, AC , AE matrices containing topological
similarities of pathways. Using these vectors and ma-
trices together with a weight parameter α ∈ [0, 1], for
adjusting the relative effect of topology and homol-
ogy, we transform our problem into three eigenvalue
problems as follows:

−−−−→
HR

k+1 = αAR

−−→
HR

k + (1 − α)
−−→
HR

0 (3)
−−−−→
HC

k+1 = αAC

−−→
HC

k + (1 − α)
−−→
HC

0 (4)
−−−−→
HE

k+1 = αAE

−−→
HE

k + (1 − α)
−−→
HE

0 (5)

for k ≥ 0.

For stability purposes
−−→
HR

k,
−−→
HC

k and
−−→
HE

k are
normalized before each iteration.

Lemma 4.1. AR, AC and AE are column stochastic
matrices.

Proof. Each entry of AR, AC and AE are nonnega-
tive by Definition 6. By construction, entries of each
column of these matrices sums up to one. �

Lemma 4.2. Let, A be an N × N column stochas-
tic matrix and E be an N × N matrix such that
E =

−→
HeT , where

−→
H is an N-vector with ||−→H ||1 = 1

and e is an N-vector with all entries equal to 1. For
any α ∈ [0, 1] define the matrix M as:

M = αA + (1 − α)E (6)

The maximal eigenvalue of M is |λ1| = 1. The
second largest eigenvalue of M satisfies |λ2| ≤ α.

Proof. Omitted, see Haveliwala et al.17 �

Using an iterative technique called power
method, our aim is to find the stable state vectors
of the Equations (3), (4) and (5). We know by
Lemma 4.1 that AR, AC and AE are column stochas-

tic matrices. By construction of
−−→
HR

0,
−−→
HC

0,
−−→
HE

0, we

have ||
−−→
HR

0||1 = 1, ||
−−→
HC

0||1 = 1, ||
−−→
HE

0||1 = 1. Now,
by the following theorem, we show that the stable
state vectors for Equations (3), (4) and (5) exist and
they are unique.

Theorem 4.1. Let, A be an N ×N column stochas-
tic matrix and H0 be an N-vector with ||H0||1 = 1.
For any α ∈ [0, 1], there exists a stable state vector
Hs, which satisfies the equation:

H = αAH + (1 − α)H0 (7)

Furthermore, if α ∈ [0, 1), then Hs is unique.

Proof. Existence: Let, e be the n-vector with all
entries equal to 1. Then, eT H = 1 since ||H ||1 = 1
after normalizing H . Now, Equation 7 can be rewrit-
ten as:

H = αAH + (1 − α)H0 = αAH + (1 − α)H0eT H

= (αA + (1 − α)H0eT )H = MH

where M = αA + (1 − α)H0eT . H0eT is a column
stochastic matrix, since its columns are all equal to
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H0 and ||H0||1 = 1. Created as a weighted combi-
nation of two column stochastic matrices, M is also
column stochastic. Then, by Lemma 4.2, λ1 = 1
is an eigenvalue of M. Hence, there exists an eigen-
vector Hs corresponding to the eigenvalue λ1, which
satisfies the equation λ1H

s = MHs.
Uniqueness: Applying Lemma 4.2 to the M matrix
defined in the existence part, we have |λ1| = 1 and
|λ2| ≤ α. If α ∈ [0, 1), then |λ1| > |λ2|. This implies
that, λ1 is the principal eigenvalue of M and Hs is
the unique eigenvector corresponding to it. �

Convergence rate of power method for Equations
(3), (4) and (5) are determined by the eigenvalues
of the M matrices (as defined in Equation 6) of
each equation. Convergence rate is proportional to
O( |λ2|

|λ1|), which is O(α), for each equation. Therefore,
choice of α not only adjusts the relative importance
of homology and topology, but it also affects running
time of our algorithm. Our experiments showed that
our algorithm performs well and converges quickly
with α = 0.7.

In Equations (3), (4) and (5), before the first it-
eration of power method we only have initial pairwise
similarity scores. In the kth iteration, the weight of
pairwise similarity score stays to be (1−α), whereas
weight of total support given by (k − t)th degree
neighbors of Ri, R̄j is αk−t(1−α). That way, neigh-
borhood topologies of matchings are thoroughly uti-
lized without ignoring the effect of initial pairwise
similarity scores. As a result, stable state vectors
calculated in this manner, are convenient candidates
for extracting the entity mappings to create the over-
all alignment for the query pathways.

4.4. Extracting the Mapping of Entities

Having combined homological and topological sim-
ilarities of query metabolic pathways, now, it only
remains to extract the mapping, ϕ, of entities. How-
ever, since we restrict our consideration to consistent
mappings, this extraction by itself is still challenging.
Figure 3 points out the importance of maintaining
consistency of an alignment.

An alignment is described by the mapping ϕ,
that gives the individual matchings of entities. Lets
denote ϕ as ϕ = [ϕR, ϕC , ϕE ], where ϕR, ϕC and ϕE

are consistent mappings for reactions, compounds
and enzymes, respectively.

If we go back to definition of consistency, there
are three conditions that ϕ should satisfy. The
first one is trivially satisfied for any ϕ of the form
[ϕR, ϕC , ϕE ], since we beforehand distinguished each
entity type. For the second condition, it is sufficient
to create one-to-one mappings for each entity type.
By using maximum weight bipartite matching we get
one-to-one mappings ϕR, ϕC , ϕE , which in turn im-
plies ϕ is one-to-one since intersections of compati-
bility classes are empty.

The difficult part of finding a consistent map-
ping is combining mappings of reactions, enzymes
and compounds without violating the third condi-
tion. For that purpose, we choose a specific or-
dering between extraction of reaction, enzyme and
compound mappings. We create the mapping ϕR

first. We extract this mapping by using maximum
weight bipartite matching on the bipartite graph con-

structed by the edge weights in
−−→
HR

S vector. Then,
using the aligned reactions and the reachability con-
cept, we prune the edges from the bipartite graph of
compounds (enzymes) for which the corresponding
compound (enzyme) pairs are inconsistent with the
reaction mapping. In other words, we prune the edge
between two compounds (enzymes), x, x̄, if there
does not exist any other compound (enzyme) pair
y, ȳ such that, x is reachable from x̄ and y is reach-
able from ȳ, or x̄ is reachable from x and ȳ is reach-
able from y. By pruning these edges we make sure
that for any ϕC and ϕE extracted from the pruned
bipartite graphs, ϕ = [ϕR, ϕC , ϕE ] is consistent.

Recall that, our aim is to find a consistent align-
ment which maximizes the similarity score SimPϕ.
The ϕ defined above satisfies the consistency crite-
ria. For the maximality of similarity score, in the
next section, we define SimPϕ and then discuss that
ϕ is the mapping that maximizes this score.

4.5. Similarity Score of Pathways

As we present in the previous section, our algorithm
guarantees to find a consistent alignment represented
by the mappings of entities. One can discuss the ac-
curacy and biological significance of our alignment
by looking at the individual matchings that we re-
ported. However, this requires a solid background
of the specific metabolism of different organisms. To
computationally evaluate the degree of similarity be-
tween pathways we devise a similarity score.
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We use pairwise similarities of aligned entities
to calculate the overall similarity between two query
pathways. The definition of similarity function
SimPϕ, is as follows:

Definition 7. Let, P = G([R, C, E], I) and P̄ =
Ḡ([R̄, C̄, Ē], Ī) be two metabolic pathways. Given a
mapping ϕ = [ϕR, ϕC , ϕE ] between entities of P and
P̄ , similarity of P and P̄ is calculated as:

SimPϕ(P, P̄ ) =
β

|ϕC |
∑

∀(Ci,C̄j)∈ϕC

SimC(Ci, C̄j)

+
(1 − β)
|ϕE |

∑
∀(Ei,Ēj)∈ϕE

SimE(Ei, Ēj)

where |ϕC | and |ϕE | denote the cardinality of cor-
responding mappings and β ∈ [0, 1] is a parameter
that adjusts the relative influence of compounds and
enzymes on the alignment score.

Calculated as above, SimPϕ gives a score be-
tween 0 and 1, such that a bigger score implies a
better alignment between pathways. We use β = 0.5
in our experiments, since we do not want to bias our
score towards enzymes or compounds. The user can
choose β = 0 to have an enzyme based similarity
score or β = 1 to have a compound based similar-
ity score. Reactions are not considered while calcu-
lating this score since reaction similarity scores are
already determined by enzyme and compound simi-
larity scores.

Now, having defined the pathway similarity
score, we need to show that the consistent mapping
ϕ = [ϕR, ϕC , ϕE ] found in the previous section, is
the one that maximizes this score. But, this fol-
lows from the fact that we used maximum weight
bipartite matching on the pruned bipartite graphs
of enzymes and compounds. In other words, since
maximality of the total edge weights of ϕC and ϕE

are beforehand assured by the extraction technique,
their summation is guaranteed to give the maximum
SimPϕ value for a fixed β.
Complexity Analysis

Let, P = G([R, C, E], I) and P̄ = Ḡ([R̄, C̄, Ē], Ī) be
two query pathways. The overall time complexity
of our algorithm, which is dominated by the power
method iterations, is:
O(|R|2|R̄|2 + |C|2|C̄|2 + |E|2|Ē|2).

5. EXPERIMENTS

In order to evaluate the performance of our algorithm
we conduct various experiments.
Datasets: We use KEGG Pathway database, which
currently has 72,628 pathways which are generated
from 360 reference pathways. We convert the path-
way data into our graph model.
Parameters: We allow users to change a set of
parameters in our implementation. This flexibility
is important in some scenarios. For instance, if a
user is interested only in enzyme similarities or com-
pound similarities between pathways, then it would
be enough to set the parameters accordingly. Due
to space limitations, we report the results with only
one parameter setting.

α is the parameter that adjusts the relative
weight of topology and homology. As we discussed,
α = 0.7 works well for our method. There is no
significant difference between different SimE and
SimC scores. We use the information content
enzyme similarity score for SimE and the SIM-
COMP similarity score for SimC in our experi-
ments. γCin , γCout , γE are relative weights of each
component in reaction similarity calculation. We set
γCin = 0.3, γCout = 0.3, γE = 0.4 to balance the
effect of compounds and enzymes on reaction simi-
larity. βC , βE are relative weights of compounds and
enzymes in overall similarity score and they are set
to βC = 0.5, βE = 0.5.

5.1. Biological Significance

Our first experiment focuses on the biological signifi-
cance of the found alignments. An alignment should
reveal functionally similar entities or sub-paths be-
tween different pathways. More specifically, it is de-
sirable to match the entities that can substitute each
other or the sub-paths that serve similar functions.
We use pathway pairs which are known to contain
not identical but functionally similar entities or sub-
paths in this experiment.
Alternative Enzymes: Two enzymes are called
alternative enzymes, if they catalyze two reactions
with different input compounds that produce a spe-
cific target compound. Similarly, we name these re-
actions as alternative reactions and their inputs as
alternative compounds. Identifying alternative en-
tities is important and useful for various applica-
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Table 1. Alternative enzymes that catalyze the formation of a common product using different compounds. 1Pathways:
00620-Pyruvate metabolism, 00252-Alanine and aspartate metabolism, 00860-Porphyrin and chlorophyll metabolism.
2Organism pairs that are compared. 3KEGG numbers of aligned reaction pairs. 4EC numbers of aligned enzyme pairs.
5 Aligned compounds pairs are put in the same column. Common target products are underlined. Alternative input
compounds are shown in bold. Abbreviations of compounds: MAL, malate; FAD, Flavin adenine dinucleotide; OAA, ox-
aloacetate; NAD, Nicotinamide adenine dinucleotide; Pi, Orthophosphate; PEP, phosphoenolpyruvate; Asp, L-Aspartate;
Asn, L-Aspargine; Gln, L-Glutamine; PPi, Pyrophosphate; Glu, L-Glutamate; AMP, Adenosine 5-monophosphate; CPP,
coproporphyrinogen III; PPHG, protoporphyrinogen; SAM, S-adenosylmethionine; Met, L-Methionine.

P. Id1 Organism2 Reaction
R. Id3 Enzyme4 Compounds5

00620
S. aureus R01257 EC:1.1.1.96 MAL + FAD → OAA + FADH2

H. sapiens R00342 EC:1.1.1.37 MAL + NAD → OAA + NADH

00620
A. thaliana R00345 EC:4.1.1.31 OAA + Pi → PEP + CO2

S. aureus R00341 EC:4.1.1.49 OAA + ATP → PEP + CO2 + ADP

00252
C. hydro. R00578 EC:6.3.5.4 Asp + ATP + Gln → Asn + AMP + PPi
C. parvum R00483 EC:6.3.1.1 Asp + ATP + NH3 → Asn + AMP + Glu

00860
S. aureus R06895 EC:1.3.99.22 CPP + O2 → PPHG + CO2

H. sapiens R03220 EC:1.3.3.3 CPP + SAM → PPHG + CO2 + Met

Fig. 4. Identification of alternative sub-paths: A portion of the metabolic pathway of steroid biosynthesis from KEGG. H.sapiens
produces Isopentenyl-PP via the lower path which is called Mevalonate Path. However, E.coli uses a totally different path called
Non-mevalonate Path, for producing Isopentenyl-PP which is shown in bold. Using our algorithm, we align the Steroid biosyn-
thesis pathways of H.sapiens and E.coli. We illustrate the resulting matchings of entities by dashed lines. Compound names are
omitted for simplicity.

tions. Some examples are, metabolic reconstruction
of newly sequenced organisms4 and identification of
drug targets3, 18, 19.

We test our tool to search for well-known alter-
native enzymes presented in Kim et al.20 Table 1
illustrates four cases in which our algorithm success-
fully identifies alternative enzymes, with the corre-
sponding reaction mappings. Furthermore, resulting
compound matchings are consistent with the alter-
native compounds proposed in Kim et al. For in-
stance, there are two different reactions that gener-
ate Asparagine (Asn) from Aspartate (Asp) as seen
in Table 1. One is catalyzed by aspartate ammo-
nia ligase (EC:6.3.1.1) and uses Ammonium (NH3)
directly, whereas the other is catalyzed by transam-
inase (EC:6.3.5.4) that transfers the amino group
from Glutamine (Gln). We compare the Alanine and
aspartate pathways (00252) of two organisms that
use the two different routes. Our algorithm aligns
the alternate reactions, enzymes and compounds cor-

rectly. Our alignment results for the other 3 exam-
ples in Table 1 are also consistent with the experi-
mental results, see 20.
Alternative Paths: As metabolic pathways are ex-
perimentally analyzed, it is discovered that differ-
ent organisms may produce the same compounds by
totally different paths. Experimental identification
provide us well documented examples of such alter-
native paths. We use our algorithm to identify these
known alternative paths in metabolic pathways.

It is shown that, two alternative paths for
Isopentenyl-PP production in different organisms
exist21. Figure 4 illustrates these paths and the en-
tity mappings found by our algorithm. Despite the
fact that EC numbers of aligned enzymes are totally
different, which indicates that their initial pairwise
similarity scores are 0, our algorithm aligns these
functionally similar paths since it also accounts for
the topological similarities of pathways.
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Fig. 5. Effect of consistency restriction on alignment scores:
Similarity scores of alignments with consistency restriction
and upper bound on the similarity of corresponding pathways

without any restriction are shown for pairs of 15,000 randomly
selected pathways. Scores below 0.25 are discarded as they in-
dicate dissimilar pathways.

Since our method finds one-to-one mappings,
only four of seven enzymes in the Non-mevalonate
path are mapped to four enzymes of the Mevalonate
path. A future work would be to relax the restriction
that mappings should be one-to-one. That way alter-
native paths with different numbers of entities would
be aligned without individual entity mappings.

5.2. Effect of Consistency

In order to output meaningful alignments, we report
the alignments that are induced by consistent map-
pings. We ensure the consistency of an alignment
by restricting entity mappings to reachable entities.
This restriction is necessary for filtering out non-
sensical mappings that degrade the accuracy of the
alignment. We compute an upper bound to the loss
of similarity score due to consistency restriction. We
find upper bounds on similarities for each alignment
by removing the consistency restriction. This is done
by ignoring the pruning phase, which is described in
Section 4.4.

Figure 5 demonstrates the effect of consistency
restriction on similarity score. For 91 % of the align-
ments the similarity score found by consistency re-
striction is not less than 90 % of the upper bound
score. Alignments with similarity scores not less than
80 % of the upper bound score constitute 98.5 % of
all pathways. Hence, the loss of similarity score due
to consistency restriction is not significant.
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Fig. 6. Running time comparison of our method and the

method of Pinter et al.: Pathways of varying size are queried
against a database of pathways. Total time for each query
including IO operations and unexpectedness calculations are
plotted for each pathway size. Pathway size is measured as
the number of enzymes in the pathway.

5.3. Running Time

As discussed theoretically in Section 4.3, our algo-
rithm is guaranteed to find entity mappings with a
high convergence rate. We implement the proposed
algorithm in C programming language and compare
its performance with an existing metabolic pathway
alignment tool designed by Pinter et al.8.

The graph model of Pinter et al. oversimplifies
the metabolic pathways in two ways. First, they to-
tally discard the compounds and reactions from the
pathway and use only enzymes. Second, they ignore
some interactions between enzymes to have acyclic
graphs. Generally, they map a pathway with n en-
zymes to a graph with n nodes and n−1 edges. Since
we refuse to have any kind of abstraction, the graph
size for the same pathway is considerably larger in
our model. For example, Folate biosynthesis path-
way of E.coli has 12 enzymes. Their simplified model
represent this pathway as a graph with 12 nodes
and 11 edges, whereas in our graph model the same
pathway is represented by 55 nodes (22 reactions,
12 enzymes, 21 compounds) and 84 edges. Since we
measure the pathway size by the number of enzymes
in this experiment, these two pathways are consid-
ered to be of the same size. Although our algorithm
builds a larger graph, Figure 6 shows that our al-
gorithm still runs significantly faster for all pathway
sizes. Our method is at least three times faster than
the method of Pinter et al. for all test cases.
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5.4. Statistical Significance

To evaluate the statistical significance of the align-
ments found by our method, we calculate z-score for
each alignment. We generate a number of random
pathways for each alignment by shuffling the labels
of the entities of query pathways. Label shuffling cor-
responds to randomly switching the rows of support
matrices of each entity type.

Our experiments show that alignment of same
metabolic pathways in different organisms create
higher z-scores than different pathways in the same
or different organisms. In a specific organism path-
ways that have similar functions, such as different
amino acid metabolisms, give higher z-scores than
pathways that belong to different functional groups.
Due to space constraints we do not present any re-
sults for this part.

6. CONCLUSION

In this paper, we considered the pairwise alignment
problem for metabolic pathways. We developed a
method that aligns reactions, compounds and en-
zymes. In our algorithm, we considered both the
homology and the topology of pathways. We en-
forced the consistency of the alignment by consider-
ing the reachability sets of the aligned entities. Us-
ing maximum weight bipartite matching, we first ex-
tracted reaction mappings. Then, we enforced the
consistency by applying a pruning technique and we
extract the mappings for enzymes and compounds.
Our experiments showed that, our method is capa-
ble of finding biologically and statistically significant
alignments very quickly.
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