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In order to improve the prediction of protein-ligand binding sites through homology modeling, we incorporate knowl-

edge of the binding residues into the modeling framework. Residues are identified as binding or nonbinding based on

their true labels as well as labels predicted from structure and sequence. The sequence predictions were made using
a support vector machine framework which employs a sophisticated window-based kernel. Binding labels are used

with a very sensitive sequence alignment method to align the target and template. Relevant parameters governing

the alignment process are searched for optimal values. Based on our results, homology models of the binding site can
be improved if a priori knowledge of the binding residues is available. For target-template pairs with low sequence

identity and high structural diversity our sequence-based prediction method provided sufficient information to realize

this improvement.

1. INTRODUCTION

Accurate modeling of protein-ligand interactions is
an important step to understanding many biological
processes. For example, many drug discovery frame-
works include steps where a small molecule is docked
with a protein to measure binding affinity1. A fre-
quent approximation is to keep the protein rigid, ne-
cessitating a high-quality model of the binding site.
Such models can be onerous to obtain experimen-
tally.

Computational techniques for protein structure
prediction provide an attractive alternative for this
modeling task2. Protein structure prediction accu-
racy is greatly improved when the task reduces to
homology modeling3. These are cases in which the
unknown structure, the target, has a strong sequence
relationship to another protein of known structure,
referred to as the template. Such a template can be
located through structure database searches. Once
obtained, the target sequence is mapped onto the
template structure and then refined.

A number of authors have studied the use of ho-
mology modeling to predict the structure of clefts
and pockets, the most common interaction site for
ligand binding4–6. Their consensus observation is
that modeling a target with a high sequence similar-
ity template is ideal for model quality while a low se-
quence similarity template can produce a good model
provided alignment is done correctly. This sensitiv-
ity calls for special treatment of the interaction site

during sequence alignment assuming ligand-binding
residues can be discerned a priori.

Identifying structural properties of proteins from
sequence has become a routine task exemplified by
secondary structure prediction. Recent work has ex-
plored predicting interaction sites from sequence7.
As a measure of how well these methods perform,
they may be compared to methods that identify in-
teraction sites from structure8. We employ both
structure and sequence-based schemes to predict in-
teraction sites but, even given perfect knowledge of
which residues are involved in binding, it is not clear
how best to utilize this knowledge to improve homol-
ogy models.

In this work we incorporate knowledge of the
residues involved in ligand binding into homology
modeling to improve the quality of the predicted
interaction site. Our contribution is to show that
this knowledge does help and can be predicted from
sequence alone with enough reliability to improve
model quality in cases where target and template
have low sequence identity. To our knowledge, this
is the first attempt to explore the use of predicted in-
teraction residues in a downstream application such
as homology modeling. We explore a variety of pa-
rameters that govern the incorporation of binding
residue knowledge, assess how much the best per-
forming parameter sets improve model quality, and
whether these these parameters generalize.
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2. RELATED WORK

2.1. Prediction of ligand-binding
residues

Small molecules interact with proteins in regions that
are accessible and that provide energetically favor-
able contacts. Geometrically, these binding sites are
generally deep, concave shaped regions on the pro-
tein surface, referred to alternately as clefts or pock-
ets. We will refer to residues in clefts as ligand-
binding residues.

Predicting ligand-binding site residues from se-
quence information is similar to several site in-
teraction prediction problems involving DNA9–11,
RNA12, 13, and other proteins14–16. Specifically,
Soga and coworkers studied the prediction of ligand-
binding site residues using conservation information
in the form of profiles and solvent accessible proper-
ties of potentially interacting residues7.

Several methods have been developed to identify
putative ligand-binding sites by determining pockets
on the protein’s surface using its structure. A pop-
ular approach for this task is to place grid points
at a small separation throughout the space of the
protein. Potential binding sites are defined by all
grid points, atoms, or residues within a fixed radius
of a central grid point. This point is typically as-
signed based on burial criteria. Software packages
such as AutoLigand17, Ligsitecsc18, VisGrid19, and
PocketPicker8 utilize this paradigm.

2.2. Homology modeling of binding site

The factors involved in modeling protein interaction
sites have received attention from a number of au-
thors. These studies tend to focus on showing rela-
tionships between target-template sequence identity
and the model quality of surface clefts/pockets.

DeWeese-Scott and Moult made a detailed study
of CASP targetsa that bind to ligands4. Their pri-
mary interest was in atom contacts between the
model protein and its ligand. They measured de-
viations from true contact distances in the crystal
structures of the protein-ligand complexes. Though
the number of complexes they examined was small,
they found that errors in the alignment of the func-
tional region between target and template created

problems in models, especially for low sequence iden-
tity pairs.

Chakravarty, Wang, and Sanchez did a broad
study of various structural properties in a large num-
ber of homology models including surface pockets5.
They noted in the case of pockets, side-chain confor-
mations had a high degree of variance between pre-
dicted and true structures. Due to this noise, we will
measure binding-site similarity using the α-carbons
of backbone residues. They also found that us-
ing structure-induced sequence alignments improved
number of identical pockets between model and true
structures over sequenced-only alignments. This
point underscores the need for a good alignment
which is sensitive to the functional region. It also
suggests using structure alignments as the baseline
to measure the limits of homology modeling.

Finally, Piedra, Lois, and Cruz executed an ex-
cellent large-scale study of protein clefts in homology
models6. To assess the difficulty of targets, the true
structure was used as the template in their homology
models and performance using other templates was
normalized against these baseline models. Though
a good way to measure the individual target diffi-
culty, this approach does not represent the best per-
formance achievable for a given target-template pair
which led us to take a different approach for normal-
ization. We follow their convention of assessing bind-
ing site quality using only the binding site residues
rather than all residues in the predicted structure.
As their predecessors noted, Piedra et al. point to
the need for very good alignments between target
and template when sequence identity is low.

The suggestions from these studies, that quality
sequence alignments are essential, led us to employ
sensitive alignment methods discussed in Section 4.3.

3. DATA

3.1. Primary structure and sequence
data

Primary data for our experiments was taken from
the RCSB Protein Data Bank (PDB)20 in January of
2008. Protein sequences were derived directly from
the structures using in-house software (Section 7).
When nonstandard amino acids appeared in the se-

ahttp://predictioncenter.org
bhttp://astral.berkeley.edu/seq.cgi?get=release-notes;ver=1.55
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quence, the three-letter to one-letter conversion table
from Astral21 version 1.55 was used to generate the
sequenceb. When multiple chains occurred in a PDB
file, the chains were treated separately from one an-
other. Identical sequences are removed by sequence
clustering methods in later steps. Profiles for each
sequence were generated using PSI-BLAST22 with
default options and the NCBI NR database (ver-
sion 2.2.12 with 2.87 million sequence, downloaded
August 2005). PSI-BLAST produces a position spe-
cific scoring matrix (PSSM) and position specific fre-
quency matrix (PSFM) for a query protein, both of
which are employed for our sequenced-based predic-
tion and alignment methods.

3.2. Definition of binding residues

We considered ligands to be small molecules with at
least 8 heavy atoms. Specifying a minimum number
of atoms avoids single atom ligands such as calcium
ions which are not of interest for this study. Protein
residues involved in the binding were those with a
distance less than 5Å between heavy atoms in pro-
tein and ligand. In-house software was developed to
filter ligands, compute distances, and report ligand-
binding residues (Section 7).

3.3. Ligand-binding residue prediction

The PDBBind database23 provided the initial set of
data used to train a support vector machine (SVM)
classifier (Section 4.1). To remove redundant entries,
sequences were extracted from the ‘refined’ set of
PDBBind structures, 1300 total structures and 2392
sequences, and clustered at 40% identity using the
CD-HIT software package.24 This resulted in 400 in-
dependent sequences for which profiles were gener-
ated. This set had sequence independence at 40%
identity from the evaluation set, described later.

3.4. Homology modeling data

Homology modeling requires target-template pairs
with some sequence or structure relation. To con-
struct such pairs, we started with the Binding
MOAD database25 which collects a large number of
PDB entries with associated ligands. The database
gives a family representative for related proteins.
For each representative with a ligand of 8 atoms or
more, we searched the DBAli database of structure

alignments26 for significant structurally related pro-
teins, (DBAli structural significance score of 20 or
better). Since our aim is to study the alignment
of ligand binding residues, we eliminated templates
which did not contain a ligand of at least 8 atoms.
Targets which had no hits in the database which sat-
isfied these criteria were also eliminated. Finally, in
order to evaluate the performance of the binding-
residue prediction, we eliminated any target which
had greater than 40% sequence similarity to the pre-
diction training set from Section 3.3 according to
CD-HIT.
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Fig. 1. The intensity of the heatmap indicates how many

of the 1152 target-template pairs have the indicated RMSD-
Sequence identity properties.

This left 409 unique targets, each having from
one to twelve templates (average 2.8 templates per
target) and 1,152 target-template pairs for the align-
ment. These pairs offer reasonable coverage of the
sequence-structure relationship space according to
their DBAli reports offering a range of easy (very
similar sequences and structures) to hard homology
modeling tasks (very different sequences and struc-
tures). DBAli is limited to structures related by less
than a 4Å alignment and have at least 10% sequence
identity which is reflected in our dataset. Figure 1
represents a distribution of the pairs over the RMSD-
sequence identity landscape. The targets cumula-
tively represent 167,034 residues of which 9.1% are
ligand-binding residues. This data was used for the
evaluation of the ligand-binding residue prediction
methods. An additional filtering step based on the
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generation of a quality baseline model was performed
(see Section 5.2) which reduced the dataset to 1,000
target-template pairs for the statistical analysis of
homology modeling results.

The identifiers for PDB entries used in our study
may be obtained from the supplemental data (Sec-
tion 7).

4. METHODS

The basis for most homology modeling approaches
is to (1) obtain a structure template for a target se-
quence, (2) align the sequences of target and tem-
plate, (3) let the target adopt the shape of the corre-
sponding template residues, and finally (4) attempt
some refinement of the shape. Our efforts center on
step (2), properly aligning the binding residues of
the target, assumed unknown, to those of the tem-
plate, assumed known. Our hypothesis is that in-
corporating knowledge of these key residues will im-
prove modeling of the binding site. In the follow-
ing sections we describe how the binding residues
of the target are predicted, how the target-template
alignment is constructed, how baseline performance
is generated from structure alignments, and the tools
used to make a structure prediction.

4.1. Ligand residue prediction

4.1.1. Structure-based prediction

We chose to use PocketPicker for structure-based
predictions of ligand-binding residues as it performed
well in a recent benchmark by Weisel et al.8. It
should be emphasized that in a true homology mod-
eling situation, the target structure is unknown
which precludes the use of structure-based predic-
tors. They are employed here to benchmark whether
binding residue prediction methods of any type are
accurate enough to improve homology models.

PocketPicker reports the five largest pockets
found in in the protein. Following the reasoning of
Weisel et al., we defined binding residue prediction
based on the single largest pocket (Pocket1) or on
the largest three pockets (Pocket3) reported. These
labels are evaluated for performance on the ligand-
binding residue prediction task. For the homology
modeling portion of the study, we used only the la-

bels defined by the three largest pockets, Pocket3, to
generate models.

4.1.2. Sequence-based prediction

Our predictions of ligand binding residues from se-
quence were made using a support vector machine
(SVM) model27. In a previous work, we developed a
generalized sequence annotation framework based on
SVM learning which included prediction of ligand-
binding residues11,c. In the present work we em-
ployed the same framework with a sliding window of
size fifteen (seven to the left and right) around each
residue to capture PSSM information on its neigh-
bors. The framework is based off the SVM software
package of Joachims28 and eases the task of creat-
ing classification and regression models for sequence
data.

A major advantage of SVM frameworks is their
ability to exploit the so-called kernel trick which
means roughly that similarity between data may be
computed in a potentially high-dimensional, nonlin-
ear space without greatly affecting efficiency. Thus,
a kernel appropriate to a given type of data may be
selected. In previous works, we have seen that the
normalized second-order exponential kernel function
(nsoe) is particularly useful in sequence prediction
problems11, 29, 30. Details of the nsoe kernel and
framework may be found in the references.

4.2. Predicted secondary structure

Incorporating aspects of predicted structure into se-
quence alignment scoring has been shown to im-
prove alignment quality31. In our preliminary stud-
ies, we found that alignments which did not uti-
lize secondary structure produced far inferior homol-
ogy models. To that end, we predicted secondary
structure using YASSPP, a SVM-based predictor29.
YASSPP produces a vector of three scores, one for
each of the three types of secondary structure, with
high positive scores indicating confidence in that
class. We would like to use true secondary struc-
ture for the templates but must be careful to use a
score calibrated to the YASSPP outputs. In order
to create these scores, we used knowledge of the true
structures of targets to calculate the average SVM
prediction values for true helices, strands, and coils.

cAvailable as a tech. report at http://www.cs.umn.edu/research/technical_reports.php?page=report&report_id=07-023
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Template residues in a helix used the average helix
vector for their secondary structure and similarly for
template strands and coils. This approach follows
from the observation of Przybylski and Rost32 that
scoring the predicted secondary structure between
two sequences improves their alignment. However,
we avoid the need to make predictions for the tem-
plates by using the averaged feature vector of the
appropriate type of secondary structure.

4.3. Sequence alignment

Previous analyses of homology models for clefts
have used alignment methods that employ global
scoring matrices, for example the ALIGN com-
mand that MODELLER provides5, 6. We improve
on these methods by employing sensitive profile-to-
profile scoring and also explore special terms related
specifically to binding residues.

4.3.1. Alignment scoring

The basic alignment algorithm we use is derived
from the work on PICASSO by Mittleman33 which
was shown to be very sensitive in subsequent studies
by others34, 30. The details of our modification are
found in a previous work35 but are briefly described
as computing an optimal local alignment using an
affine gap model with matching residues i and j in
sequences X and Y , respectively, scored as

SP2P (Xi, Yj) =
20∑

k=1

PSSMX(i, k)× PSFMY (j, k)

+
20∑

k=1

PSSMY (j, k)× PSFMX(i, k),

(1)

where PSSM is the position specific scoring of a se-
quence and PSFM is the position specific frequency
matrix of a sequence. This is known as profile-to-
profile scoring (P2P).

In addition to the P2P scores, we included scor-
ing between secondary structure elements in the tar-
get and template. This was computed as a dot prod-
uct of the YASSPP descriptor vectors (Section 4.2)
and is referred to hereafter as SSE.

The P2P and SSE scores were combined linearly
with half the matching score coming from each. We
used a subset of 48 target-template pairs, picked
for sequence/structure diversity, to optimize our gap

opening and extension penalties for our affine gap
model. After a grid search, these were set to 3.0
and 1.5 which produced the best homology models
on standard alignments.

4.3.2. Modified alignments: using binding

labels

As we sought to give special attention to the lig-
and binding residues, we incorporated one additional
term into matching residues to reflect this goal. Each
residue was labelled either as ligand-binding or not.
In the case of the targets, these labels were either
the true labels, as described (Section 3.2), the struc-
ture predicted labels, or a sequence-predicted labels,
(both in Section 4.1). Templates always used true
labels. The contribution of matching and mismatch-
ing binding and nonbinding residues was controlled
using a matrix of the form

Mlig =
(

0 mnb

mbn mbb

)
. (2)

The parameters relate to a target-template
nonbinding-binding mismatch (mnb), target-
template binding-nonbinding mismatch (mbn), and
target-template binding-binding match (mbb). In
all cases we considered, mbn and mnb were nega-
tive, penalizing a mismatch, while mbb was posi-
tive, rewarding a match. The parameter to score a
nonbinding-nonbinding match would appear in the
upper left entry of Mlig but this match was con-
sidered neutral and thus set to zero throughout the
study. The ligand modification was not weighted
when combining it with P2P and SSE scores. The
final form of scoring between residue Xi of target
and Yj of template is

S(Xi, Yj) =1
2SP2P (Xi, Yj) + 1

2SSSE(Xi, Yj)

+ Mlig(Xi, Yj),
(3)

where SP2P is the profile-to-profile score, SSSE is the
dot product of the secondary structure vectors, and
Mlig(Xi, Yj) is the modification matrix score based
on the whether the residues are considered binding
or not.

We refer to alignments formed from mnb =
mbn = mbb = 0 as standard alignments as they
do not incorporate knowledge of the ligand-binding
residues in anyway. Nonzero modification parame-
ters are termed modified alignments. Our hypothesis



July 8, 2008 10:34 WSPC/Trim Size: 11in x 8.5in for Proceedings paper

216

is that for some set of parameters, the modified align-
ment will produce better homology models than the
standard alignment.

4.4. Structure alignments

The sequence alignment of target and template is in-
tended to approximate a map of structurally related
portions. Accordingly, one could expect a sequence
alignment derived from a structure alignment to give
a very good starting point for the homology modeling
process. This is, of course, impossible when the tar-
get is unknown. However, in a benchmark study such
as ours the structure induced sequence alignment will
give a reasonable baseline for the best performance
that can be expected of sequence alignment.

MUSTANG is a software package which aligns
structures and produces their induced sequence
alignment36. We used MUSTANG (version 0.3)
to produce a baseline alignment for each target-
template pair. Homology models were produced for
the MUSTANG alignments and used to normalize
scores, described in Section 4.6. These structure-
induced alignments are referred to as baseline align-
ments as they use a true structure relation between
target and template giving the homology model the
best chance for success.

4.5. Homology modeling

Once a sequence alignment has been determined be-
tween target and template, we used MODELLER to
predict the target structure37. We employed version
9.2 of the MODELLER package which is freely avail-
able. As input, MODELLER takes a target-template
sequence alignment and the structure of the tem-
plate. An optimization process ensues in which the
predicted coordinates of the target are adjusted to
violate, as little as possible, spatial constraints de-
rived from the template.

Details of our use of MODELLER are as follows.
The ‘automodel’ mechanism was used which, given
the sequence alignment, performs all necessary steps
to produce a target structure prediction. We chose to
generate a single model as a brief preliminary explo-
ration indicated little changes when multiple mod-
els are generated (data not shown). As mentioned
earlier, some template structures contained nonstan-

dard amino acids for which MODELLER will fail. To
that end, we used a modified table of amino acid code
to type conversions, taken from ASTRAL as in Sec-
tion 3.1, to model nonstandard residues as an anal-
ogous standard residue. The mechanism for defining
such a table is described in the MODELLER man-
uald and the specific table we used is available with
the other supplementary data (Section 7).

4.6. Evaluation

4.6.1. Ligand-binding residue predictions

quality

We evaluated the sequence-based prediction of
ligand-binding residues using the receiver operating
characteristic (ROC) curve38. This is obtained by
varying the threshold at which residues are consid-
ered ligand-binding or not according to the SVM out-
put of the predictor. For any binary predictor, the
number of true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN) de-
termines standard classification statistics which we
use for comparison between the structure-based and
sequence-based predictors. These are

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

Specificity =
TN

TN + FP
(7)

4.6.2. Homology modeling quality

We chose to evaluate predicted structures (models)
based on their RMSD from the true structure of the
protein in question. A low RMSD indicates similarity
between two structures. Calculations were done us-
ing in-house software which implements the quater-
nion method of computing RMSD39. Only the α-
carbon coordinates are used for the RMSD compu-
tation. Following the convention of Piedra et al.6,
we computed the RMSD between only the ligand-
binding residues in the model and those in the true
structure as these residues are most important to
models of the binding site. For brevity, this will

dhttp://www.salilab.org/modeller/manual/node105.html
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be called the ligRMSD for ligand-binding residues
RMSD.

Difficult modeling tasks are not expected to
achieve a low RMSD: there is not enough informa-
tion present in the template to deduce a high qual-
ity target model. Evaluating purely on the above
RMSD criteria would not account for this factor.
We chose to normalize the RMSD in the following
way. Using the baseline sequence alignment (gen-
erated from structure, Section 4.4), we produced a
model for the target. The ligRMSD was calculated
for this model against the true structure and is de-
noted ligRMSDbase. Sequence-only alignments were
then used to generate homology models for the same
target-template pairs. The ligRMSD for these mod-
els, denoted ligRMSDseq, was divided by the lig-
and RMSD of the corresponding ligRMSDbase. The
sequence alignments we produced were local while
the baseline alignments were global. Using a lo-
cal alignment means that some of the ligand-binding
residues were potentially omitted from the alignment
and subsequent model. For a given model, the total
number of ligand binding residues is ntot while the
number of ligand-binding residues in the model is
nmod. We penalize the score of models by the ratio
of total to missing residues. This gives a normalized
homology score of

H =
ligRMSDseq

ligRMSDbase
× ntot

nmod
. (8)

Due to the ratio that is taken here, the scores should
follow a log-normal distribution. When doing our
statistical analysis, we convert into log-space to cal-
culate significance but report results in the usual
space.

To test whether knowledge of the ligand-binding
residues improved or degraded binding site models,
we performed Student’s t-Test on the normalized
scores of the standard alignment predictions paired
with the corresponding normalized scores for modi-
fied alignments. The null hypothesis is that the two
have equal mean while the alternative hypothesis is
that the modified alignments produce models with a
lower mean (a one-tailed test). We report p-values
for the comparisons noting that a p-value below 0.05
is typically considered statistically insignificant. We
also report the mean improvement (gain) from us-
ing modified alignments. If the mean of all normal-
ized homology scores for the standard alignments is
H̄stand and that of a modified alignment is H̄mod, the

percent gain is

%Gain =
H̄stand − H̄mod

H̄stand
. (9)

A positive gain indicates improvement through the
use of the ligand-binding residue labels while a neg-
ative gain indicates label use degrades the homology
models.

5. RESULTS

5.1. Ligand-bind residue prediction from
sequence and structure

Figure 2 illustrates the receiver operating character-
istic (ROC) for the sequence-based predictor on the
evaluation set. To produce binary labels, a threshold
was chosen so that the number of predicted positives
was approximately equal to the number of true pos-
itives. The threshold point is shown in Figure 2 and
statistics of the labels it induces are shown in Ta-
ble 1. Also in Table 1 we show the performance of
the structure-based predictor on the targets based
on binding-residue definitions from the largest sin-
gle and largest three pockets, labeled Pocket1 and
Pocket3 (Section 4.1).
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Fig. 2. ROC of sequence-only predictions of ligand-binding
residues on evaluation set. The threshold position indicates
the FPR and TPR for the predicted labels used in evaluation.

The AUC is 0.7351 for the evaluation set.

In predicting ligand-binding residues, the
sequence-only predictions are very comparable to
those of the structure-based methods in terms of ac-
curacy. As expected, the precision is worse than the
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best structure-derived labels method, but the two
perform similarly when three of the largest pockets
are used in the structure method.

Table 1. Performance statistics for predict-

ing ligand-binding residues

Statistic SeqPred Pocket1 Pocket3

Accuracy 0.8813 0.8948 0.8302
Precision 0.3531 0.4430 0.3087

Recall 0.3572 0.5839 0.6907

Specificity 0.9341 0.9261 0.8443

A threshold of -0.91 was chosen for the
sequence-based prediction as the cutoff for

the positive class. Two variants of Pocket-
Picker were used: positive residues generated

from the single largest and three largest pock-

ets, Pocket1 and Pocket3.

5.2. Homology modeling

Homology models were produced for the standard
alignment procedure and for modified alignments
that incorporated ligand labels derived from three
sources: the true labels (Section 3.2), structure pre-
dicted labels, and sequence predicted labels (both in
Section 4.1).

In some cases, the predicted structure that is
produced by MODELLER is obviously wrong, for ex-
ample when the model is in an extended rather than
compact conformation. We removed structures for
which the baseline alignment produced a model with
greater than 10Å all-residue RMSD from the true
structure. This left 1000 structures for the statisti-
cal analysis. Additional filtering was done on each
target-template pair with failures being ignored for
the analysis. Finally, we analyzed models in sub-
groups with specific sequence and structure proper-
ties and report the sample size of each group.

5.2.1. Using true labels for binding residues

The second section of Table 2 shows the improve-
ment for alignments which used the true labels of
ligand-binding residues. We found parameters mbb =
10, mnb = mbn = 0 to provide the most improvement
over standard alignments, though mbb ∈ {7.5, 12.5}
with mnb = mbn = 0 produced only slightly inferior
results. Also, mbb = 10,mnb = −2.5,mbn = 0 per-
formed well. We will discuss the issue of asymmetry
in scoring later as it also pertains to the sequence

and structure predicted labels.
The table shows sequence/structure subgroups

along with the quality gained through the use of la-
bels and whether the result is statistically significant
(p-value ≤ 0.05). Improvement for the true labels
occurs in low sequence identity groups with better
gains in the higher structure diversity subgroup (2-
4Å RMSD). At higher sequence identity, use of the
labels improves performance only when the target
and template are structurally diverse (0-50% iden-
tity and 2-4Å RMSD).

5.2.2. Using structure-predicted labels

We report the results of using structure predicted
binding labels in the third section of Table 2. The
best parameters we found in our grid search were
mbb = 5,mnb = 0, and mbn = −2.5, an assymet-
ric scoring matrix. We see similar trends for the
structure-predicted labels as were observed for the
true labels with the largest gains appearing in the
low sequence identity and high structural diversity
areas of sequence-structure space. The magnitude of
improvement for the structure-predicted labels ap-
pears greater in some cases than the true labels. We
are still investigating the cause of this behavior.

5.2.3. Using sequence-predicted labels

The fourth section of Table 2 shows homology mod-
eling results when sequence predicted labels are used.
Again, asymmetric scoring parameters of mbb =
5,mnb = 0,mbn = −2.5 provided the best perfor-
mance. The significant gains are achieved only in
the low sequence identity category and are greater in
magnitude when the target-template structures are
more diverse.

5.2.4. Comparisons

To compare the performance of true, structure-
predicted, and sequence-predicted labels, we exam-
ine the first two rows of Table 2. These are the sub-
groups of pairs related by ≤ 30% sequence identity
and a DBAli structure alignment either between 0 ≤
4.0Å or 2 ≤ 4.0Å. These two subgroups are where
use of the ligand-binding labels appears to offer pos-
itive gains regardless of their source. The improve-
ment given in these groups by the sequence-based
labels are smaller than those for true and structure-
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Table 2. Homology modeling results

True Labels Structure Labels Sequence Labels

SeqID RMSD N nmod
ntot

%Gain p-value N nmod
ntot

%Gain p-value N nmod
ntot

%Gain p-value

0≤ 30 2.0≤4.0 234 0.99 3.51 0.0009 234 0.98 3.34 0.0099 234 0.98 2.03 0.0276
0≤ 30 0.0≤4.0 254 0.99 3.09 0.0018 254 0.98 3.95 0.0037 254 0.98 1.87 0.0274

30≤ 60 0.0≤2.0 135 1.00 -0.02 0.5104 131 1.00 -0.93 0.7468 135 1.00 -0.50 0.7922

30≤ 60 2.0≤4.0 192 0.98 -1.40 0.9266 189 0.98 -1.10 0.7462 192 0.98 -2.33 0.9448
30≤ 60 0.0≤4.0 325 0.99 -0.83 0.9058 318 0.99 -1.04 0.8182 325 0.99 -1.58 0.9611

60≤100 0.0≤2.0 267 0.98 -0.34 0.9342 265 0.98 -0.72 0.8405 267 0.98 0.05 0.4334

60≤100 2.0≤4.0 121 0.99 -0.53 0.8451 120 0.99 -1.20 0.8492 121 0.99 -0.27 0.7274
60≤100 0.0≤4.0 388 0.98 -0.40 0.9626 385 0.98 -0.87 0.9217 388 0.98 -0.05 0.5838

0≤ 50 0.0≤2.0 116 1.00 -0.55 0.7718 114 1.00 1.28 0.2780 116 1.00 0.13 0.4109

0≤ 50 2.0≤4.0 395 0.98 1.73 0.0110 392 0.98 1.37 0.1204 395 0.98 0.03 0.4887

0≤ 50 0.0≤4.0 505 0.99 1.23 0.0230 500 0.99 1.38 0.0920 505 0.99 0.04 0.4769
50≤100 0.0≤2.0 312 0.98 -0.22 0.7796 308 0.98 -0.76 0.8812 312 0.98 -0.21 0.7647

50≤100 2.0≤4.0 152 0.99 -1.22 0.9072 151 0.99 -0.67 0.7519 152 0.99 -0.04 0.5167

50≤100 0.0≤4.0 464 0.98 -0.55 0.9374 459 0.98 -0.73 0.9123 464 0.98 -0.15 0.6701
0≤100 0.0≤2.0 426 0.99 -0.31 0.8587 420 0.99 -0.21 0.6091 426 0.99 -0.11 0.6688

0≤100 2.0≤4.0 546 0.99 0.92 0.0641 542 0.99 0.81 0.1817 546 0.99 0.01 0.4952

0≤100 0.0≤4.0 966 0.99 0.38 0.1469 956 0.99 0.37 0.2673 966 0.99 -0.05 0.5492

Columns one and two are the target-template sequence and RMSD ranges. The remaining columns relate specifically to each

type of label. Columns three through six describe the sample size, ratio of modeled to total binding residues (Equation 8), per-

centage gain (Equation 9), and significance of results of models predicted using true labels. Columns six through eight describe
the structure-predicted labels and columns nine through twelve the sequenced-predicted labels. The term nali

ntot
is averaged over

all models in the sample and, being close to one in all cases, indicates the majority of ligand binding residues are modeled.

based labels, but they are present and significant. It
is also interesting to examine the last row of Table 2
and note that over the entire dataset, the true and
structure-predicted labels offer positive though sta-
tistically insignificant gains while sequence-predicted
labels slightly degrade model quality overall. This
suggests use of labels only in the case when the only
available templates are those with low sequence iden-
tity.

In many cases, the sequence-predicted labels did
very well compared to the structure labels. An ex-
ample of this is shown in Figure 3 for target 1h5q
chain A produced by alignment to 1mxh chain D. In
this case, the sequence-only method performs nearly
identically to the structure-based method for deriv-
ing labels.

The magnitude of the ligand-ligand matching re-
ward is different between the true and predicted la-
bel methods, 10 for true labels, 5.0 for the predicted
labels. This is likely due to low precision for the
predicted ligands.

The success of asymmetric scoring parameters
for predicted labels still requires further investiga-
tion. It was expected that the true signal from tem-
plate ligands to govern the success of the scoring pa-
rameters. This would lead to a negative mnb to pe-
nalize ‘missing’ known ligand binding residue in the
template. This appears to be the case for true labels

which had good performance for mbb = 10,mnb =
−2.5,mbn = 0. However, the opposite has shown to
be true for both the sequence and structure-based
alignments, that mnb is neutral while mbn is used to
penalize the alignment of a predicted binding residue
to a nonbinder in the template.

5.2.5. Generalization of model parameters

When proposing a parameterized model that shows
prediction improvements, care is needed to ensure
that the chosen parameters are not highly depen-
dant upon the data used for measurement. Since
our modified alignments depend on a small number
of parameters that affect the scoring binding residue
matches, we want to ensure that these parameters
will reproduce the reported performance on future
data. To that end, we performed a permutation test
to determine the validate the modified alignments.

For the sequence/structure subgroups of inter-
est, we took random subsets and performed paired
Student’s t-Test on the standard and modified align-
ment normalized scores. We took the average p-value
over 1000 random subsets and used it as an indi-
cation of how well the parameters are expected to
perform on future data.

Models generated using the true labels and the
parameters mbb = 10,mnb = 0,mbn = 0 had better
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(a) Mustang, ligRMSD=1.46Å (b) True Labels, ligRMSD=1.61Å

(c) SeqPred, ligRMSD=1.74Å (d) PocketPicker, ligRMSD=1.75Å

Fig. 3. Homology models for target 1h5q chain A (template 1mxh chain D with 20% sequence identity and 2.48Å RMSD)
produced by the 4 types of alignments. The protein has 260 residues with 35 ligand-binding residues. A backbone trace for the

true model is shown in lightly colored, the predicted model in darkly colored, and the α-carbons of ligand-binding residues are

shown as spheres. Images were produced with Pymol.

average p-values than other parameters in all the sig-
nificant cases mentioned above indicating that they
are likely to be applicable to future data.

Average p-values for the structure-based pre-
dicted labels and the parameters mbb = 5,mnb =
0,mbn = −2.5 were better than other parameter sets.
Again, significance was achieved in all the the cases
above indicating good generalization.

Finally, the sequence predicted labels did not ap-
pear to have as good of generalization properties. At
sequence identity ≤ 0-30% and RMSD 0 ≤ 4Å, the
average p-values were between 0.08 and 0.11. An im-
proved sequence predictions and a finer-grained grid-
search will likely locate optimal parameters for the

sequence-predicted labels generalize well.

6. CONCLUSIONS

We have explored the performance of a sequence-
based and a structure-based ligand-binding residue
predictor and have shown that making use of these
predictions in a homology modeling framework can
improve the overall quality of predicted structures.
This effect is most pronounced when the sequence
identity between the target and template is low.

Our prediction of ligand-binding residues from
sequence was by no means perfect but the down-
stream application shows that even noisy predictions
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can benefit homology models.
It is unclear at this point why using the

structure-predicted labels from PocketPicker outper-
form the true labels but this may be a moot point as
in real homology modeling the structure of the target
is unknown. This result may suggest that an alter-
nate definition for ligand-binding residues should be
used, one which accounts for the location of a residue
in a pocket as well as being within contact distance
of the ligand.

There are several relevant directions to pursue
in order to expand on the current work. Improving
ligand-binding residue prediction from sequence will
no doubt boost the performance of models generated
via this mechanism. Though the set of parameters
we explored for alignment modification was sufficient
to indicate improvement, it was by no means exhaus-
tive enough to claim that the optimal parameters
were located. The particular values used for modifi-
cations are highly dependent on other aspects of the
alignment process such as P2P scoring function. This
remains a general problem worth studying: what is
the best way to incorporate diverse information (pro-
files, SEE, ligand labels) into the scoring scheme for
alignments? Extending the notion of a ‘label’ for
a residue to a continuous value, indicative of con-
fidence, will increase the flexibility of this part of
the scoring scheme and remove the need to derive a
threshold separating positive and negative classes.
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