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Simultaneous analysis of multiple genetic variants is an essential strategy for understanding genetic dissection of complex traits, 

focusing epistasis along with additive and dominance effects of individual genes. Although phenotypic variation for complex traits 

might be largely explained by epistasis, most analyses have excluded the possibility of epistasis, especially with lack of individual locus 

effects. The conventional models for estimating all the possible epistatic effects have a decisively vulnerable point of potentially low 

power or often nonestimable statistics due to a large number of parameters. Restricted partition method (RPM), a recently developed 

nonparametric approach for estimating epistasis, overcame the drawback but has both biologically and statistically undesirable 

properties caused by grouping genotypes.  A Bayesian method using a Gibbs sampler for estimating epistasis for complex continuous 

traits was developed to overcome such problems. This method was devised to draw inferences on multilocus genotypic effects by a 

Bayesian approach based on their marginal posterior distributions and to attain the marginalization of the joint posterior distribution 

through Gibbs sampler as a Markov chain Monte Carlo. A simulation study revealed that the Bayesian method using a Gibbs sampler 

was superior to the currently utilized MDR. Especially, prediction errors substantially decreased under various environmental exposures 

by the Bayesian method using a Gibbs sampler. The programs would be available for both Gamma and Chi-square prior distributions. 
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1.   INTRODUCTION 

Phenotypic variability for complex quantitative traits 

might be largely explained by epistasis, gene-by-gene 

interaction effects. Simultaneous analysis of multiple 

genes by estimating epistasis along with additive and 

dominance effects of individual genes is an essential 

strategy for understanding genetic dissection of complex 

traits. Nevertheless, the potential interaction effects have 

not been analyzed in many genetic studies of complex 

traits because of the increasing number of genetic 

interaction parameters.
1
 This problem is serious 

especially when individual locus effects lack. The 

conventional models for estimating all the possible 

epistatic effects have a decisively vulnerable point of 

potentially low power or often nonestimable statistics 

because of a large number of interaction parameters. In 

order to overcome the drawback, a nonparametric 

approach was recently developed for estimating 

epistasis, and it is called restricted partition method 

(RPM).
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Although the RPM overcame the drawback, it 

has both biologically and statistically undesirable 

properties caused by grouping genotypes.
3
 

More recently, a Bayesian method using a Gibbs 

sampler for estimating epistasis for complex continuous 

traits was proposed to overcome such problems, and we 

call it Bayesian inference by Gibbs sampling on 

multilocus genotypic effects (BIGSMGE). In the current 

study, we generalized the BIGSMGE. 

2.   BAYESIAN INFERENCE BY GIBBS 

SAMPLING ON MULTILOCUS 

GENOTYPIC EFFECTS  

In the BIGSMGE, inferences about unknown effects of 

multilocus genetic interaction was based on their 

marginal posterior distribution in a Bayesian framework. 

The marginalization of the joint posterior distribution 

was attained through Gibbs sampling.  

2.1.   Posterior distribution 

A general formula for the joint posterior distribution of 

all parameters was first derived using the Bayes 

theorem. Previously, inverse Gamma distributions (G
-1

) 

were assumed for the priors of variance components for 

both genetic interaction effects and residuals.
3
 This was 

because the use of flat priors for variance components 

might lead to inferences based on theoretically 

nonexistent posterior distributions.
4
 Inverse chi-square 

distributions (X
-2

) as another prior distribution family 



 

was also incorporated with the method in the current 

study. Full conditional posterior distribution was 

subsequently derived by obtaining the posterior 

distribution of each parameter given the data and all 

other parameters.  

2.2.   Gibbs sampling 

Gibbs sampling was applied as a numerical integration 

method based on a Markov chain Monte Carlo. We 

conducted the intensive iterative sampling from the 

consecutively updated full conditional posterior 

distributions derived in the previous section. For 

example, 

1. Set arbitrary initial values for fixed effects, random 

multilocus genotypic effects, genetic variance 

component, and residual variance component. 

2. Generate residual variance component using its full 

conditional posterior distribution (G
-1 

or X
-2

), and 

update it. 

3. Generate genetic variance component using its full 

conditional posterior distribution (G
-1 

or X
-2

), and 

update it. 

4. Generate multilocus genotypic effects using its full 

conditional posterior distribution (N; normal 

distribution), and update them. Or generate and 

update a multilocus genotypic effect, and 

subsequently generate and update one multilocus 

genotypic effect at a time. 

5. Generate fixed effects using the following full 

conditional posterior distribution, and update it. 

6. Repeat the steps 2, 3, 4, and 5. 

An intensive iteration is required to get the reasonable 

estimates of multilocus genotypic effects. For the default, 

the Gibbs sampler is run 12,000 iteration rounds. The 

first 2,000 rounds are discarded as a warming-up period 

before convergence. The default thinning interval of 10 

rounds is applied for retaining sampled values that 

reduce lag correlation among consecutive samples.  

2.3.   Estimation of genotypic effect 

The posterior mean estimate of the multilocus genotypic 

effect is calculated as the mean of its values generated 

from the post warming-up rounds of Gibbs sampling.  

3.   SIMULATION 

Data simulation was conducted to see if BIGSMGE fit 

the data with epistasis and to compare BIGSMGE to 

RPM. 

3.1.   Monte Carlo simulation 

Quantitative trait was simulated generated by adding a 

genotypic mean and an error generated from Normal 

distributions. The simulation was devised with  balanced 

and unbalanced designs. Regardless of the balance of 

the design, the average sample size for each genotype 

was 5, 10, 20, or 50. In another simulation, a fixed effect 

was additionally included in the phenotypic value. A 

total of 2,000 data sets were simulated from 

combinations of within genotype variance, sample size, 

balance of design, number of loci, and existence of fixed 

effect. Fifty replicates were simulated for each set. A 

random number generator based on Box-Muller method 

was used to generate random Gaussian deviates.
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3.2.   Results 

The simulated data were analyzed by BIGSMGE with 

the prior of G
-1

, BIGSMGE with the prior of X
-2

, and 

RPM. Mean square prediction errors (MSPEs) were 

estimated for genotypic means by each method, and the 

best method was selected for each simulated data set 

(Tables 1 and 2). The MSPE obtained from BIGSMGE 

were smaller (P<0.05) than the corresponding MSPE 

from RPM regardless of the simulated designs such as 

within genotype variance, sample size, and balance of 

design. Correspondingly, the proportion of RPM 

selected as the best method was negligible. Comparing 

the priors, BIGSMGE with G
-1

 was somewhat superior 

to that with X
-2

. 

 
Table 1.  The best method among BIGSMGE with the prior of 

G-1 (M1), BIGSMGE with the prior of X-2 (M2), and RPM 

(M3) fitting data simulated without fixed effects. D1=balanced 

and small sized data, D2=unbalanced and small sized data, 

D3=balanced and large sized data, D4=unbalanced and large 

sized data 

(%) 

  D1 D2 D3 D4 

M1 51.1 55.8 57.9 62.1 

M2 48.9 44.1 42.1 37.9 

M3 0.0 0.1 0.0 0.0 

 

 



        

Table 2.  The best method among BIGSMGE with the prior of 

G-1 (M1), BIGSMGE with the prior of X-2 (M2), and RPM 

(M3) fitting data simulated with fixed effects. D1=balanced and 

small sized data, D2=unbalanced and small sized data, 

D3=balanced and large sized data, D4=unbalanced and large 

sized data 

(%) 

  D1 D2 D3 D4 

M1 54.3 60.2 58.9 59.5 

M2 45.7 39.8 41.1 40.5 

M3 0.0 0.0 0.0 0.0 

 

4.   DISCUSSION 

The simulation study revealed a larger MSPE using 

RPM than using BIGSMGE. This might be due to the 

information loss from grouping in RPM. Furthermore, 

estimating epistasis by RPM would not have viable 

implication to biological epistasis because biology for 

the grouping is hardly explained.  

Using the prior of inverse Gamma distributions was 

preferable in the comparison of the priors in BIGSMGE. 

There was, however, any specific trend along with the 

simulation designs. Especially, this was true with a small 

degree of belief. Furthermore, the differences of MSPE 

were not statistically significant in more than 90% of 

data sets (P>0.05).  The programs would be available 

for both prior distributions at the homepage of the 

Laboratory of Statistical Genetics, Department of 

Bioinformatics and Life Science, Soongsil University 

(http://clee11.cafe24.com/). 
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