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The physical mechanisms involved in allosteric regulation remain unclear. We present a novel and efficient method for investigating
the propagation of regulatory signals in protein structures. Our approach utilizes undirected graphical models to efficiently encode the
Boltzmann distribution over geometric configurations. Belief Propagation is then invoked to efficiently compute: (a) free energies and (b)
allosteric couplings between distal residues. We present results from two kinds of experiments. First, we show that our method accurately
predicts changes in free energy upon activation and/or mutation. Specifically, our method achieves a high correlation with experimentally
determined ∆∆Gs (R2 = 0.90 for core residues). Significantly, our method is capable of identifying those residues experiencing the
largest relative changes in enthalpy and/or entropy. Second, we use our method to study the allosteric behavior of cyclophilin A in
enzyme catalysis. Our analysis reveals the allosteric coupling between residues separated by as much as 20 angstroms from the active
site. These results correspond well with experimental measurements. Our method requires a few minutes per protein, making it suitable
for large-scale studies. Taken together, these results suggest that our method provides an effective means for investigating allosteric
regulation at the proteome scale.

1. INTRODUCTION

Proteins are inherently dynamic molecules6. Increas-
ing evidence from experiments as well as computational
work suggests that this inherent flexibility is largely re-
sponsible for a protein’s function. Several studies indi-
cate the presence of distal couplings between residues,
whereby an event such as binding is transmitted across
the entire protein to influence catalysis or signaling (Fig.
1). The presence of such allosteric couplings between
distal sites naturally leads to the question if there are pre-
ferred pathways through which conformational changes
may propagate5. At the present time, there are very few
methods for elucidating these pathways within protein
structures.
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Fig. 1. Allosteric Couplings The binding of an allosteric effector in-
duces structural changes at the active site, thus regulating the behavior
of the protein.
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2. METHODS

We describe here a novel approach to reveal mechanisms
of how conformational changes at one site can propagate
to distal locations along the protein’s structure. Our ap-
proach is based on a probabilistic modeling of the side-
chain conformational space of a protein. As is com-
mon practice, we discretize the conformational space of
each residue type using a rotamer library. If we use
R = 〈R1, R2, . . . , Rn〉 to represent the n variate ran-
dom variable representing the side-chain conformations
of a protein backbone b, our approach encodes P (R|b)
accurately and efficiently using a Markov Random Field
(MRF).

The MRF encoding exploits the fact that energetic
interactions fall off rapidly with distance. This generic
property of physical systems at this scale leads to condi-
tional independencies between atoms with negligible in-
teraction energies. Figure 2 illustrates a toy MRF for a
4-residue protein fragment. The MRF is overlayed on the
protein. Nodes correspond to random variables over ro-
tameric states.
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Fig. 2. A toy 4-residue model.

Given a MRF of a protein structure, we can compute
the marginal conditional probabilities P (Ri = ri|b, e)
of each rotameric state ri for every residue i of the
protein using Belief Propagation12. Figure 2 illustrates
these marginals as histograms. Our algorithm examines
changes in these marginals in response to conformational
perturbations, like binding. In previous work, we have
shown that this probabilistic modeling accurately com-
putes the global properties of the conformational distri-
bution in proteins9–11 and protein complexes7, 8. More-

over, running BP only takes a few minutes per structure,
making it ideally suited to performing systematic pertur-
bation studies.

3. RESULTS

We first demonstrate that our method accurately pre-
dicts changes in free energy upon mutation. As shown
in Figure 3, our method achieves a high correlation be-
tween experimentally determined4 and predicted ∆∆Gs
(R2 = 0.9) for five point mutations in the core of eglin C
(V13A, V14A, V34A, V54A, V62A).

Fig. 3. Predicted ∆∆G values show good agreement with experimen-
tal values. Inset shows predicted ∆∆G values for all mutants showing
outliers which are solvent exposed.
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Fig. 4. Residues in eglin c showing significant changes in free-energy
upon mutation.

An important feature of our method is that we are
able to compute the residue-specific changes in free en-
ergy upon mutation. We use this information to identify



communication pathways. Figure 4 shows the results of
two such mutations. In each case, the residue highlighted
in green is the residue mutated, while red surface is used
to highlight side-chain that are significantly perturbed by
the mutation. Notice that a single mutation can induce
changes throughout the protein.

This phenomenon is not unique to eglin C, nor does
it require mutations. Figure 5 illustrates that significant
free energy changes are detected upon ligation in regions
distal to the active site in four unrelated proteins. The in-
active protein shown as gray cartoon. The activated pro-
tein is shown as a backbone trace, colored by the change
in free energy.
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1. 1G16: Sec protein

2. 1OIV: Rab 11

3. 1XTQ: RHEB

4. 1ERK: MAP Kinase

Fig. 5. Four allosteric proteins.

3.1. Identifying Allosteric Couplings

In this section, we examine in detail the allosteric cou-
pling networks revealed by belief propagation in cy-
clophilin A (cypA) from 3 different species (H. sapi-
ens, B. taurus, P. yeolii). CypA is an important recep-
tor for several immunosuppressive drugs and HIV infec-
tion. Experimental work3 and molecular dynamics (MD)
simulations1, 2 have identified a network of coupled mo-
tions that influences the substrate isomerization process.
These networks consist of 27 residues exhibiting corre-
lated motions, extending from the flexible surface re-
gions all the way to the active site of the enzyme. The
study provides us an ideal testing ground since the net-
works have been extensively characterized across multi-
ple species and multiple substrates.

For every residue i in each structure of cypA,
we systematically fixed its sidechain conformation to

every possible rotamer ri to assess the nature of con-
formational coupling that is intrinsic to the structure.
We then compared the change in the marginal prob-
abilities before and after the conformational change
for every residue using the symmetric KL divergence
(KLsym(P (Rj |b, ri), P (Rj |b, rj))). For every residue
across all conformations, we counted the number of
residues that showed significant deviations in their mar-
ginals (Na) by defining a suitable threshold. Using this
metric and the distance of separation (D) between the
two residues, we assessed if our method can distinguish
between the behavior of network residues versus non-
network residues. As shown in Table 1, network residues
(N) affect a larger proportion of non-neighbor residues
at longer distances than non-network residues (non-N).
The ability of network residues to influence the confor-
mational state of distal residues is statistically significant
across structures, as well in each individual structure.

Table 1. Summary of network (N) and non-network (non-N) residue
behavior across all species of CypA. µ and σ represent the mean and
standard deviations of the respective classes of residues in each of the
six categories (a) Hydrophobic/ Polar (H/P), (b) Number of affected
residues (Na), (c) average distance to affected residues (Avg(D)), (d)
maximum distance to affected residue (Max(D)) (e) Number of neigh-
bors at 10 angstrom cut-off (Nn) and (f) ratio of (c) and (e).

µ(N) σ(N) µ(non-N) σ(non-N) p-value

H/P 0.637 0.4826 0.4085 0.492 � 0.001
Na 14.3926 5.7732 9.6285 5.1538 � 0.001

Avg(D) 8.4333 1.1245 7.8289 1.4344 � 0.001

Max(D) 13.8646 3.181 12.2153 3.5086 � 0.001
Nn 21.8815 4.6857 18.0352 4.9721 � 0.001

Na/Nn 0.656 0.2357 0.5367 0.2543 � 0.001

Next we examined whether conformational changes
within the network residues affected similar sets of
residues across different species. For this, we compared
the intersection of residues affected by the changes in
conformation of every network residue pair separated by
at least 10 angstroms. We observed that irrespective of
the species or substrate bound, the network residues af-
fect the conformation of specific residues located across
the entire protein. These residues are located on dynam-
ically coupled regions in CypA affecting the catalytic
process as observed in previous studies.

For suitable control, we considered those residues
that were not part of the network yet conserved across
different species. These residues are located proximal to
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Fig. 6. Conservation of Allosteric pathways in cyclophilin A (CypA). Top row: Pathways detected via belief propagation analysis from F22-F113.
Bottom row: Pathways detected via belief propagation analysis from F22-R55.

the network residues both structurally and sequentially.
We observed that although the average distances between
the network and non-network pairs of residues were sim-
ilar, the non-network residues did not affect distally sepa-
rated residues, in agreement with previous studies regard-
ing coupled motions in CypA. This indicates a clear bias
in the nature of conformational coupling exhibited by net-
work residues to those of the non-network residues.

Finally, a careful inspection of the residues affected
by changes in the conformations of the network also
reveal similar pathways of conformational connectivity
across multiple species. Example pathways are shown
in Fig. 6. The top row left figure shows the pathway be-
tween F22 and F113 (human). The pathways between the
corresponding residue in cow and P. yoelii are shown in
the top middle and right figures. F22 is in the core of the
protein, and F113 is on the surface and is where substrate
binding happens3. These two residues are separated by
over 12 angstroms. The belief propagation analysis re-
veals that these residues are connected via a similar set
of hydrophobic interactions, irrespective of sequence ho-
mology. Additionally, this pathway exhibits a high corre-
lation in terms of coupled motions as observed from MD
simulations 2. The bottom row shows conserved path-
ways from F22 to a different active residue (R55). This
pathway is mediated by hydrogen bonds and hydrophobic
interactions. Once again, the belief propagation analysis
reveals a conservation in the pathways.

4. CONCLUSIONS

We have presented a novel approach to reveal mecha-
nisms of distal conformational coupling within protein
structures. The approach is physically based as it in-

corporates standard molecular mechanical force fields for
computing internal energies and computes a rigorous ap-
proximation to the entropic contributions to the free en-
ergy. Our results suggest that belief propagation can be
used to identify networks of residues that respond to vari-
ous perturbations (mutations, binding, etc) in an efficient
manner. These networks appear in a variety of proteins
and our experiments on cypA suggests that they may be
conserved to some degree across species. We believe that
by using our approach, one may predict mechanisms of
energy transfer between different parts of the protein and
analyze allosteric regulation in protein structures. The
availability of such accurate and efficient methods to un-
derstand protein function could be of significant use to
biologists wanting to understand protein-protein interac-
tion networks at a structural level.

5. ONGOING WORK

We are presently pursuing a number of extensions to this
preliminary study. First, we have recently developed
a MRF capable of modeling both backbone and side-
chain flexibility7, 8. We are presently re-running these
experiments to examine the role that backbone flexibility
plays in signal transduction. Second, we are interested
in the physical interpretation of message passing algo-
rithms. It is known that the fixpoints of the belief propa-
gation algorithm correspond to those of well-studied free
energy-approximations13. However, the physical inter-
pretation of the actual messages used in belief propaga-
tion is not well understood. Finally, we are examining
a collection of well-characterized mutants to characterize
our method’s ability to predict which mutations affect the
couplings between residues.
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