
PEPTIDE IDENTIFICATION USING BOTH SPECTRUM LIBRARIESAND PROTEIN DATABASESMarshall BernPalo Alto Researh Center, 3333 Coyote Hill Rd.Palo Alto, CA 94304, USAEmail: an bern�par.omThe \standard" method for peptide identi�ation by tandem mass spetrometry ompares observed mass spetrato predited mass spetra, omputed from protein databases. Another approah, atively promoted in the last fewyears, ompares observed mass spetra to previously observed, \library" spetra. In this paper we desribe algorithmsand software for ombining the two methods in a way transparent to the user. The software applies the same dot-produt soring algorithm to theoretial and library spetra, so that results from the two types of searhes are diretlyomparable. We show that ombined database and library searh outperforms either method alone.1. INTRODUCTIONIn the past 15 years, shotgun proteomis1; 2 hasemerged as the dominant paradigm for analysis ofprotein samples. In this method, a omplex proteinsample is digested with a protease suh as trypsininto a still-more-omplex peptide mixture, whih isthen separated by liquid hromatography (LC) andassayed by tandem mass spetrometry (MS/MS).The tandem mass spetra are most often identi�edby database searh, that is, by omparison with pre-dited, \theoretial" spetra of peptides in a pro-tein database. There are numerous searh tools forthis omparison; the most popular ones are Masot3,SEQUEST4, and X!Tandem.5 Tandem spetra ofpeptides, however, are not ompletely preditable,as the fragment ions and their relative intensities(peak heights) depend upon the instrument parame-ters and the peptide hemistry in some ompliatedand poorly understood way. The spetrum-libraryapproah o�ers an alternative to database searh;the idea here is to ompare eah unknown spe-trum to previously observed well-identi�ed spetra,rather than to theoretial spetra. This approaho�ers shorter searh times, beause the number offrequently observed peptides (trypti or otherwise)from some organism will typially be at least 100times smaller than the total number of peptides inthe proteome. In the long run, one spetrum li-braries o�er suÆient overage, the approah shouldalso o�er greater sensitivity, beause an unknownspetrum should more losely math an observedspetrum than a theoretial spetrum of the orret

peptide.Here we propose a hybrid method that enables agraeful transition to the spetrum-library approah.The spetrum library an be built in-house in theourse of biologial studies, using one MS set-up,rather than relying on publi-aess spetrum li-braries from a variety of set-ups. Database-searhand spetrum-library soring use exatly the samepeaks (a-, b-, and y-ions, neutral losses, and soforth), and only the predited intensities hange, sothat the system an ompare the sores from thetwo approahes diretly. The system automatiallyhooses the best math, and if the math exeeds asore threshold, it optionally reords the spetrumfor subsequent searhes. Indeed our hybrid tool on-sists of two separate programs: ByOni6 for databasesearh and a new program alled LyBrary for li-brary searh. The hybrid approah does not o�erthe speed-up of the pure spetrum-library approah,but it o�ers greater sensitivity beause it an identifya peptide the �rst time it is observed.We tested our hybrid method using two bi-ologial samples (Jurkat ell lysate and mouseblood plasma) for whih we had numerous tehni-al repliates. We address the following questions:How muh sensitivity improvement is possible withthe spetrum-library approah? How muh woulddatabase searh improve with aurate intensity pre-dition? Can the spetrum-library approah improvethe limit of detetion (that is, the lowest onentra-tion at whih proteins are reliably deteted)?



2. BACKGROUNDWe start with an example peptide agfagddapr++with fragmentation spetrum shown in Figure 1. Themost important fragment ions orrespond to pre�xesand suÆxes of the peptide sequene, and these ionsare onventionally named a-, b-, and -ions and x-,y-, and z-ions, respetively. The most ommon ionsprodued by CID fragmentation (ollision-indueddissoiation) are the b- and y-ions. The ion num-ber indiates the number of residues, so that the b3ion from the peptide agfagddapr++ is agf+ andthe y6 ion is gddapr+. CID also produes some a-ions; the a4 ion is essentially the b4 ion with a lossof arbon monoxide (28 Daltons).
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Fig. 1. A tandem-MS spetrum of agfagddapr++ fromatin, aquired on a Thermo LTQ ion-trap instrument. Peaksgrowing up show relative intensity (perent of total ion ur-rent); 0.5 has been added to eah peak for visibility. Peaksgrowing down show ByOni's rank-based Iobs(s) values andrank-based Iref (s) preditions. for the same spetrum. Rank\attens" the peak intensities, taking them partway to pres-ene/absene. Unobserved peaks like a3 at 248 and b9 at 802Da have negative Iobs(s) values (not shown).The rationale for the spetrum library approahis the following: given the sequene agfagddapr,it is hard to predit that y6 and y7 would be themost intense y-ions, that b9�18 (water loss fromb9) would be more intense than b9 (atually missingfrom Fig. 1), and that a4 would be the only promi-nent a-ion, yet these seem to be stable features oflow-energy CID MS/MS spetra, repeated in otherspetra of the same peptide as shown in Figure 2.Some other features, however, are apparently not sostable, for example, All�18++ and All�36++ (thefull peptide with water losses) are prominent in Fig. 1

but not in Fig. 2. As shown in Fig. 3, di�erent instru-ment types and di�erent preursor ion harges givedi�erent intensity patterns. In this work we limit at-tention to a single type of instrument, whih wouldbe the likely senario for in-house library searh.In order to maximize our library overage, we alsolimit attention to +2 preursors, the most impor-tant harge state for ion-trap instruments employingCID fragmentation.The spetrum-library approah was proposed byYates et al.7 in 1998, but the �rst large-sale e�ortsare the Global Proteome Mahine (GPM) by Beaviset al.8; 10 and the PeptideAtlas projet by Desiere,Aebersold, et al.12, both of whih now have 105 {106 well-identi�ed spetra. (An early e�ort by NISTfoused mostly on small moleules.13) The initialannotations for GPM are made by X!Tandem andthe library searh software is alled X!Hunter. Nowthat the GPM library inludes some 400,000 \proteo-typi" peptides, GPM also o�ers a mode alled X!P3in whih the library searh identi�es the proteins14,and then X!Tandem makes a broader searh, inlud-ing modi�ations of observed peptides and other pep-tides from the same proteins. The searh tool asso-iated with the PeptideAtlas projet is SpetraST,15part of the Trans Proteomi Pipeline from the In-stitute for Systems Biology. Yet another projetbuilt library-searh software alled BiblioSpe,16 anddemonstrated ross-instrument identi�ation usingtwo types of ion trap, Thermo LCQ and LTQ.All of these e�orts use very simple soring al-gorithms. For example, X!Hunter uses only the 20largest peaks in a library spetrum.10 BiblioSpe andSpetraST use more peaks, but they both roundmass-over-harge (m/z) measurements to the los-est integer, rather than using a settable mass toler-ane. In all three ases, the peaks are not nees-sarily identi�ed peaks; the software relies on aver-aging multiple spetra to remove noise and improvem/z measurements. (Spetrum lustering11 also av-erages spetra, but it averages them prior to identi�-ation.) Beause LyBrary uses only identi�ed peaks,it reords exat (theoretial) m/z values and disardsunexplained \noise" peaks. Exat m/z values are ofourse a great advantage, espeially in identifyinghigh-resolution spetra (QTOF, Orbitrap, FTICR)using low-resolution library spetra (ion-trap). This
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m/zFig. 2. More Thermo LTQ MS/MS spetra of agfagddapr++ from three di�erent hromatographi runs and threedi�erent organisms (human, mouse, and C. elegans). In all ases the tallest peaks inlude y2 at 272, b3 at 276, a4 at319, y3 at 343, b4 at 347, y8++ at 424, y5 at 573, y6 at 630 Da, and y7 at 701. All-18++ and All-36++ at 480 and471 are most prominent in the rightmost spetrum.
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m/zFig. 3. Agilent QTOF spetrum of agfagddapr++ on the left, and Thermo LTQ spetrum of agfagddapr+ on theright. In the QTOF spetrum, prominent peaks inlude b3 at 276, b4 at 347, All++ (without water loss) at 489, y6 at630, and y7 at 701. The peaks at 70 and 120 (the tallest) are immonium ions from proline and phenylalanine, rarelyobserved in ion-trap spetra. In the spetrum of the singly-harged peptide, the tallest peaks are y3 at 343, y4 at 458,y5 at 573, y8 at 848, and All-18+ at 958.design hoie, however, has a potential downside:maybe there are unusual|and hene unidenti�ed|signal peaks, e.g., doubly harged b-ions, harater-isti of the peptide, that LyBrary does not onsider.We address this question in Setion 5.In previous studies, the library approah hasalways given muh greater speed, but beause ofinomplete libraries has not always given greatersensitivity.9 Craig et al.10 report 1000-fold speedimprovement and 50% better sensitivity on a sam-ple ontaining only bovine serum albumin; in thisase the spetrum library had essentially ompleteoverage. Lam et al.15 report that on four yeastdata sets, SpetraST always gave a better sen-sitivity/spei�ity tradeo� (ROC urve) than SE-QUEST, but SEQUEST gave a larger number ofhigh-probability mathes on two of the data sets.Frewen et al.16 report that with their most omplete

library (for E. oli), BiblioSpe ould make 91% ofthe identi�ations made by SEQUEST. Library ov-erage of yeast and E. oli is muh more ompletethan for organisms with larger proteomes,15 so it isfair to say that overage remains the major limita-tion of the spetrum-library approah. We designedLyBrary to �ll this need: library searh that workseven without high overage.3. ALGORITHMSLyBrary is built on top of ByOni,6 a onventionaldatabase searh program. Given an unknown spe-trum, ByOni (respetively, LyBrary) sores andi-date peptides using a soring funtion that essen-tially takes the dot produt of two vetors: the ob-served spetrum and the theoretial (library) spe-trum. Spei�ally, given an observed spetrum S



and a theoretial or library spetrum T , the sore isSore(S; T ) =Xs2St2T A(s; t) � Iobs(s) � Iref(t); (1)where s is a peak in S and t a peak in T . A peakis a pair of numbers: an m/z measurement and anintensity, roughly proportional to ion ount.The most informative ions in MS/MS spetra ofpeptides are b- and y-ions, whih orrespond to pre-�xes and suÆxes of the amino aid sequene. Themass of a b-ion is the sum of the residue masses alongwith 1.007 Dalton for the mass of a proton; a y-ioninludes the residue masses along with a proton andwater (18.011 Da). Other ommonly observed ionsare water and ammonia losses from b- and y-ions, de-noted by �18 and �17 in Figure 4; doubly hargedy-ions, suh as \y9 2+"; and neutral losses from thepreursor ion suh as \All-36 2+" and \All-18 2+".

Fig. 4. A sreenshot of ByOni's soring report for the pep-tide ssgsllnnamk++. The �rst two olumns give observedand theoretial m/z values. The third olumn shows rela-tive intensity (perent of total ion urrent); the fourth olumnshows rank-based intensity; and the �fth olumn, \Wt Fa-tor" shows ByOni's predition of the rank-based intensity inarbitrary units. The sore is the dot produt of olumns 4 and5, with eah summand in the dot produt weighted aordingto the loseness of the math in the �rst two olumns.To be inluded in the sum for Equation (1), them/z measurements for peaks s and t must mathwithin a user-de�ned tolerane, typially 0.4 Dal-tons per harge (Thompsons) for an ion-trap instru-

ment. A is a funtion that returns 1.0 if the m/zmeasurements math exatly and drops to 0.0 in abell-shaped urve as the di�erene between the mea-surements inreases to the user-de�ned tolerane.6ByOni uses a rank-based funtion for weighting ob-served intensity:Iobs(s) = A=(2 + Rank(s)) + B � RelI(s)� C (2)After orreting for isotope peaks and varying in-strument sensitivity aross the m/z range, Rank(s)is 1 for the tallest peak in S, 2 for the seond tallest,and so forth. RelI gives peak s's fration of the totalion urrent in S, and A, B, C are empirially hosenpositive onstants, suh that the Rank term domi-nates over the RelI term. C is inluded so that apredited but unobserved peak makes a small nega-tive ontribution to Sore(S; T ); this helps level theomparison of andidates with di�erent numbers ofpredited peaks. See Figures 1 and 4.ByOni inludes rule-based \expert system"ode (following the lead of Zhang17) that attempts topredit Iobs(s) based on the peptide sequene, hargestate, instrument type, and so forth; this preditionis used as Iref(s). The expert system inludes hem-ial knowledge suh as the fats that y5 { y9 ionstend to be strong, that a2 and a4 are the most likelya-ions, and that leavage is likely on the C-terminalside of proline (hene the strong y1 peak in Figure 1).The expert system is of ourse obviated by the li-brary approah, and for LyBrary we tried varioushoies for Iref(s) as desribed below. ByOni's rank-based Iobs(s) and Iref(t) were hosen for robustness;with the library approah more aggressive intensityweighting is possible.Sorers in other searh tools di�er in variousways. For example, Masot uses 0 = 1 values for bothIobs(s) and Iref(t), using the intensities only to de-ide where to ut o� the observed peak list andwhih \peak series" (a-, b-, y-ions, et.) to sore.X!Tandem uses relative intensity for Iobs(s) (normal-ized to the tallest peak rather than the total ionurrent) and unit intensities for Iref(t). SEQUESTuses relative intensity within an m/z band for Iobs(s)and unit intensities for Iref(t). None of the majordatabase searh engines inlude an A term, butseveral de novo sequeners do.18



3.1. Library Spetrum Intensity WeightsLyBrary's sorer di�ers from ByOni only in theweights Iref(s). We explored three possibilities. Inall ases, we normalized the Eulidean length of thevetor of Iref(s) values to agree with the length ofthe vetor predited by ByOni's expert system. Ly-Brary sores are thus omparable to ByOni sores,but we expet LyBrary sores for orret mathesto be somewhat higher, beause the peak intensitiesfrom library spetra should be more aurate thanthose from theoretial spetra, that is, the angle be-tween the observed and library spetra, regarded asvetors, should be loser to zero. For a given peptidep, let S(p) denote the library spetrum mathing pwith highest ByOni sore. We also tried using theaverage of all library spetra for p, but the resultswere almost idential.(1) Rank-based intensities. In this option, Ly-Brary set Iref(s) equal to Iobs(s) in S(p).(2) Relative intensities. LyBrary set Iref(s) to therelative intensity of s in S(p).(3) Square root. LyBrary set Iref(s) to the squareroot of the relative intensity of s in S(p).3.2. Software ArhitetureFor a top-soring peptide-to-spetrum math (PSM),ByOni writes out a soring report suh as the oneshown in Figure 4. The report details eah peakdown to rank 20 { 200 (depending upon peptide massand the number of peaks in the spetrum), its inten-sity, its predited intensity (if any), and so forth. Thereport also inludes predited peaks not observedand large unexplained peaks (at least 0.5% of thetotal intensity in the MS/MS spetrum).LyBrary really onsists of two programs:Arhive and LibSore. Arhive parses and refor-mats ByOni's soring reports into a spetrum li-brary. The library is organized by preursor mass,so that one �le inludes all peptides with preursormass 1600 { 1700 Da, another inludes all with pre-ursor mass 1700 { 1800, and so forth. In order tosore an unknown spetrum, LibSore opens the rel-evant library �les and sores all the peptides with theright preursor mass. For example, if the unknownspetrum has preursor mass 1708.78, LibSore run

without modi�ations (and preursor mass toleraneat most 8 Da) would open only the �le with masses1700 { 1800 Da. If oxidized methionine were en-abled, then LibSore would also open the �le withmasses 1600 { 1700 Da in order to sore peptides of(unmodi�ed) mass 1708:78�15:995with one m[+16℄,peptides of mass 1708:78�31:990 with two m[+16℄'s,and so forth. LibSore, like ByOni, sets reasonablelimits on the numbers of modi�ations per peptide,at most two m[+16℄'s, at most one sodiation, and soforth.LibSore uses ByOni's predited peak intensi-ties to normalize the previously observed peak inten-sities; these normalized intensities, an equal-lengthbut di�erent-diretion vetor, then substitute for By-Oni's preditions in the soring subroutine. Lib-Sore writes its output in the same plain-text for-mat as ByOni, so that subsequent programs likeComByne19 (a peptide-to-protein integration tool)an use output from either program, or even onate-nated �les produed by any ombination of searhesfrom either tool. Our hybrid approah atually on-sists of a run of ByOni and a run of LibSore (ona previously built library), a onatenation of thetwo outputs, and then a run of ComByne to produethe �nal report, whih we generally read into an Ex-el spreadsheet. ComByne always piks the highestsoring PSM for eah spetrum, regardless of the ori-gin (ByOni or LibSore) of the PSM.LibSore atually has two ways to make modi-�ation identi�ations: it an use either a previousobservation of the same peptide with (exatly) thesame modi�ations, or a previous observation of thesame peptide without modi�ations. (In all the ex-periments reported in Setion 4, however, we usedonly the latter path.) LibSore annot urrently usean observation of dnstm[+16℄gymmak to identifydnstm[+16℄gym[+16℄mak. When LibSore usesan unmodi�ed library peptide to identify a modi�edunknown, it assumes that the peak intensity patternis unhanged, only the masses are shifted. This as-sumption is reasonable for most low-mass modi�a-tions, and has been validated in Bandeira's work onspetral networks analysis,20 but the assumption isnot wholly true form[+16℄, whih sometimes loses 64Da, and is quite untrue for phosphorylation (s[+80℄and t[+80℄), whih has a prominent neutral loss of



98 Da. In the ase that both modi�ed and unmodi-�ed peptides are in the library, LibSore obliviouslysores the andidate math both ways and retainsonly the higher sore.4. EXPERIMENTAL RESULTSWe used two data sets, desribed below. Due tolak of suÆient data, we did not attempt to use aspetrum library built for one type of instrument tomake identi�ations on another type, nor did we at-tempt to identify the same peptide in di�erent hargestates.(1) Jurkat Cell Lysate. Five LC-MS/MS runs ona Thermo LTQ Orbitrap, with Orbitrap single-MS and LTQ MS/MS. These runs are essentiallytehnial repliates, di�ering only in details ofthe data aquisition (e.g., whether the top 5 or10 peaks in the single-MS san were seleted forMS/MS).(2) Mouse Blood Plasma. Six LC-MS/MS runson a Thermo LTQ of MARS-depleted mouseblood plasma, spiked with low onentrations of13 soluble human proteins. (MARS is \multipleaÆnity removal system" for removing serum al-bumin and 5 other abundant proteins in orderto improve dynami range.) The spiked proteinswere at two di�erent onentrations, 1 �g/mland 10 �g/ml, with 3 tehnial repliates at eahonentration.4.1. Complete CoverageWe used the Jurkat sample to test how muh sensi-tivity gain is possible with the spetrum library ap-proah, assuming a best-ase senario in whih thelibrary has omplete overage of all the peptides inthe sample. In this omputational experiment, we�rst used ByOni for a onventional database searhusing the IPI human protein database with about49,000 protein sequenes. We inluded reversed pro-tein sequenes as \deoys" in order to measure falsepositive and false disovery rates.21 We ran searheswith and without modi�ations enabled; the modi�-ations onsidered were oxidation (m), deamidation(n and q), pyro-glu (N-terminal e and q), aetyla-tion (, s, k and N-terminus), disul�de bridge (sine

the sample had no ysteine treatment), arbamyla-tion (k, r and N-terminus).Orbitrap preursor masses were good to about�7 ppm, so we judged 20 ppm to be a safe toleranefor preursor masses. High preursor mass aurayalone is very informative and hene an mask dif-ferenes between soring algorithms, so we also ransearhes with a \�titious" preursor mass toleraneof 5 Da.Table 1. Numbers of mathes to 30 abundant peptides fordatabase searh (ByOni) and spetrum library (LyBrary),using either 20 ppm or 5 Da preursor mass tolerane. Wereport average numbers over the 5 runs, for two di�erentsearhes: a no-modi�ation searh, and a searh with 13modi�ations enabled. The �rst four lines of the table showthat library searh with rank-based weighting gives about10% { 20% greater sensitivity than database searh withrank-based weighting. The last three lines show that rankand square-root weighting beat relative intensity.Searh # No mod # ModsByOni (5 Da) 133.6 142.0ByOni (20 ppm) 137.4 146.4LyBrary (rank, 5 Da) 147.0 155.8LyBrary (rank, 20 ppm) 157.6 172.6LyBrary (sqrt root, 5 Da) 145.6 154.0LyBrary (relative, 5 Da) 133.4 142.2The spetrum library for run 1 inluded allhigh-soring spetra from runs 2{4, even those thatmathed deoy peptides. This \aggressive" poliy al-lowed us to generate the library automatially, with-out any manual uration. The library for run 1 in-luded 6804 peptides, inluding 348 reversed pep-tides. We used a similar leave-one-out approah forall 5 runs. For both database searh and librarysearh, we ounted the number of mathes (of anysore) to 30 abundant trypti peptides found in all5 runs, all of whih are true (non-reversed) peptides.This simulates the ase of omplete overage, be-ause we only ount peptides represented in all spe-trum libraries. Mathes to the top 30 peptides arepresumed orret, beause the top 30 peptides repre-sent less than 0.5% of the spetrum library and lessthan 0.01% of the protein database. We use the num-ber of mathes to the top 30 peptides as a proxy forthe overall number of orret mathes (\sensitivity"or \reall"), beause it is hard to validate mathes tolow-ranking peptides or proteins in omplex naturalsamples.



Table 2. Numbers of mathes to the top 100 proteins in run 1 of the Jurkat ell lysate for database searh (ByOni),spetrum library (LyBrary), and ombined searh. The spetrum library was built using runs 2 { 5.Searh # Spetra # Mod Spetra # Unique Coverage of Top 3 ProteinsByOni 1567 216 1241 32.6% 44.7% 20.7%LyBrary (rank-based) 1717 208 1206 24.6% 30.0% 16.5%LyBrary (relative intensity) 1704 195 1184 25.6% 30.0% 17.4%LyBrary (sqrt relative intensity) 1715 194 1199 24.6% 30.0% 16.5%ByOni + LyBrary (rank-based) 1846 255 1406 34.1% 43.8% 22.1%As shown in Table 1, library searh outperformsdatabase searh by a small amount. Rank-based andsquare-root of relative intensity outperformed rawrelative intensity, whih gave the top few peaks toomuh onsideration. Top peaks suh as \All-18 2+"(the entire peptide, doubly harged, with one wa-ter loss) do not disriminate between andidate pep-tides of the same preursor mass very e�etively be-ause most peptides an lose water. Frewen et al.16also found that using the square-root gave better re-sults. Surprisingly, high preursor mass auraygave LyBrary a bigger boost than it gave ByOni.We attribute this to the sizes of the library and thedatabase. 20 ppm preursor auray typially limitsthe number of library possibilities to about 10 (100if modi�ations are enabled) so that even very poorspetra with few fragment peaks an be identi�ed,but the number of database possibilities is still onthe order of 104 (or 105 with modi�ations).The experiment desribed in this setion alsogives a partial answer to another of our questions.If we ontinue to develop ByOni's intensity predi-tion, without making any other improvements, wean expet to ahieve only moderate gains in sensi-tivity, at most about 20% more identi�ations at thespetrum level.4.2. Inomplete CoverageIn this setion, we drop the omplete-overage as-sumption and address a more realisti senario inwhih the spetrum library is built from a small num-ber of similar samples and hene has inomplete ov-erage. We again used a leave-one-out approah, withthe spetrum library for run 1 built using runs 2 {5, but now we onsider not just the top 30 peptides,but all peptides in top proteins. Table 2 reports thenumber of spetra mathed to peptides from the top100 proteins in run 1 of the Jurkat ell lysate, forByOni, LyBrary, and a hybrid run, whih ran both

ByOni and LyBrary as explained above. We used 20ppm preursor mass tolerane and searhed tryptiand semitrypi +2 peptides with the same modi�-ation list as above. The top-100 protein list wasompiled by an initial run of ByOni and ComByne,but a protein list ompiled using LyBrary and Com-Byne is not muh di�erent.As shown in the table, ByOni alone mathedfewer spetra to the top 100 proteins, but foundmore unique peptides and more modi�ed peptides.The di�erene in performane was modest|LyBrarygave less than 10% more mathed spetra. Runs 2{ 5 (not shown) give similar results, with LyBrary'sedge varying from 9% to 12%. On all runs, the hy-brid approah gave the best results on all measures,with an edge of 15% to 21% over ByOni alone.On this sample, it appears that a set of four runsof exatly the same material on exatly the same pro-teomis set-up gives deent but not omplete over-age. LyBrary found almost as many unique pep-tides as database searh, but its overage of the top3 proteins fell short of ByOni's overage. This isonsistent with MS/MS studies22 in whih repeatruns onsistently yield some new peptide and pro-tein identi�ations. Table 3 gives our own studyof this type. ByOni an make these new identi�-ations, but LyBrary alone annot identify peptidesnot represented in the library. Conversely, LyBrary'sidenti�ations that were not found by ByOni of-ten mathed poor spetra to already-identi�ed abun-dant peptides at the beginning or end of their elutionpulses, or mathed poor spetra to modi�ed versionsof abundant peptides. The �rst type of extra identi-�ation is not espeially useful, but the seond typemay be quite important if the modi�ations are bio-logially ative. Beause ByOni and LyBrary havedi�erent strong points, the hybrid approah gives thebest overall analysis of the data.



Table 3. Numbers of peptides and proteins found byombining ByOni's database-searh identi�ations from6 repeat runs of the mouse blood plasma sample. Thepeptide number is the number of distint peptides in the3 most abundant proteins (Alpha-2-maroglobulin, om-plement C3, and murinoglobulin), with di�erent modi�-ation states onsidered distint. Coverages gives perentoverage for the top 3 proteins. The protein number is thenumber of proteins ranked above the 3rd highest reverse.Runs # Peptides Coverages # Prots1 281 58% 61% 50% 1391{2 353 61% 67% 54% 1501{3 388 62% 69% 57% 1541{4 450 67% 75% 60% 1611{5 506 67% 77% 61% 1671{6 535 68% 79% 61% 167What about protein sensitivity? We usedComByne19 to integrate peptide identi�ations intoprotein identi�ations. ByOni �nds 269 proteins at1% FDR as measured by the number of reversed pro-teins, that is, ComByne's ranked list put the thirdhighest reversed protein at rank 272. LyBrary alone�nds fewer proteins|typially around 200|and thenumber is unstable and hard to estimate beause thespetrum library ontains only a few reversed pep-tides for gauging FDR. The best result was obtainedby ByOni plus LyBrary (rank-based) using a on-servative spetrum library, whih inluded only ex-tremely high-soring spetra and no spetra math-ing reversed peptides. This ombination found 296proteins at 1% FDR.4.3. Improved Limit of Detetion?Sample 2 onsists of mouse blood plasma, spikedwith either low (1 �g/ml) or high (10 �g/ml) on-entrations of 13 soluble human proteins. We built aspetrum library using 3 hromatographi runs withhigh onentrations, where the spiked proteins arefairly easy to detet, to test whether the spetrumlibrary approah would help �nd the spiked proteinsin the lower onentration samples, where many ofthe spiked proteins are missed by ByOni (and everyother database searh engine we have tried). Thequestion we would like to answer is whether low-abundane proteins are missed beause they have noMS/MS spetra or beause their MS/MS spetra aretoo poor to be identi�ed.Again we used an aggressive spetrum libraryinluding both forward and reversed proteins. We

searhed the spetra for trypti and semitrypti pep-tides, assuming only +2 preursor harge, withoutany modi�ations enabled. For the mouse bloodplasma sample, whih was taken on a Thermo LTQinstrument (without Orbitrap), the harge annotbe reliably determined in advane, but previoussearhes on this sample showed that +2 preursorspredominate and that less than 10% of the peptidesarry modi�ations. Overall results were onsistentwith the earlier experiments. ByOni alone mathed1516 spetra representing 894 unique peptides tothe top 100 proteins. LyBrary alone mathed 1582peptides representing 614 unique peptides. The hy-brid approahmathed 1778 spetra representing 916unique peptides. The top-ranked reversed proteinhad rank 120 for ByOni, 110 for LyBrary, and 113for ByOni + LyBrary. All three approahes foundthe same 8 spiked proteins with about the same on-�dene, in the sense that for all three approahes 5of the 8 proteins were reliably identi�ed (above thetop-ranking reverse protein) and 3 were in the grayzone (below the top-ranking reverse, but well abovethe noise zone, the point in the ranked list at whihhalf of the protein identi�ations are reversed).This result suggests that although the hybridapproah does indeed o�er higher sensitivity at thespetrum level (17% more mathes to the top pro-teins, onsistent with the results on the Jurkat sam-ple), it does not o�er ommensurate improvementat the protein level. We believe that low-abundaneproteins, at least in single-LC runs of blood plasma,are most often missed beause they have no MS/MSspetra at all. Blood plasma is very rih in peptides,so that the usual top-5 or top-10 approah to shotgunproteomis (piking only the 5 or 10 biggest single-MS peaks for MS/MS) will fail to aquire MS/MSspetra for many low-abundane proteins.5. DISCUSSIONLibrary searh potentially improves sensitivity in twoways. First, it provides a foused database ontain-ing only observable \proteotypi" peptides.9 Evenour aggressive library-building strategy gave librariesof less than 10,000 peptides, but the full IPI humanprotein database ontains on the order of 106 tryptipeptides. Seond, library searh gives more aurateintensity preditions for fragment peaks, beause the



preditions are based on previous observations ratherthan general priniples. Thus one might hope thatlibrary searh would give very large sensitivity gainsover database searh. Unfortunately this does notseem to be the ase. Craig et al.10 reported 50%greater sensitivity in the omplete-overage ase; andwe report muh less, only 10% { 20% improvement,in Table 1.Why did our library searh program fall short?We think that ByOni provides a better baselinethan X!Tandem and leaves less room for improve-ment. X!Tandem does not predit peak intensities,and does not sore neutral losses nor doubly hargedions, whih are often among the top 20 peaks. Eventhough ByOni's expert system annot predit rela-tive intensity very aurately, it an predit rank-based intensity reasonably well. ByOni's predi-tions of rank-based intensity have median orrelationoeÆient 0.559 with observed rank-based intensi-ties. This number is the orrelation of olumns 4 and5 (Rank Wt and Wt Fator) of the soring reports(Figure 4), with the median taken over 920 uniquepeptides from the blood plasma sample. Observedand re-observed rank-based intensities|the analo-gous statisti for LyBrary|give median orrelationoeÆient 0.780. The orrelation oeÆient for ob-served and re-observed relative intensities is higher(around 0.9) beause a few strong peaks dominate.Finally, we return to the question of whether thelibrary approah should use spetra ontaining allobserved peaks as in GPM and PeptideAtlas or onlyidenti�ed peaks. In this work we used only identi�edpeaks for ompatibility with database searh. Afterrunning our omputational experiments, we tenta-tively onlude that this hoie did not adversely af-fet the spetrum library approah. The number oflarge unexplained peaks (greater than 0.5% of totalion urrent) is not overwhelming. For example in theaggressive library for run 4, there are about 28,000large unexplained peaks and 174,000 explained peaks(large and small) in 6606 library spetra. Preditedbut unobserved peaks are ommon|129,000 in thesame library.What are the large unexplained peaks? Are theyion types not onsidered by ByOni? For CID ion-trap spetra of +2 preursors, ByOni onsiders thefollowing peaks (and sores them if they fall into the

right m/z range): b1 { bn�1, where n is the length ofthe andidate peptide, y1 { yn�1, along with singlewater and ammonia losses from these ions. ByOnialso sores doubly harged y-ions from y4 to yn�1,the a-ions a2 { a8, and single and double neutrallosses from the preursor ion. ByOni does not sorethe following ions: internal fragments, a-ions largerthan a8, doubly harged b-ions, double neutral losses(e.g., two waters or one water and one ammonia)from b- or y-ions, and triple neutral losses from thepreursor ion. We have observed all of the ignoredions just named, but statistis on our training setssuggest that these ions are infrequent and not worthsoring. In fat, ByOni deliberately \over-sores",inluding some infrequent peaks (b1, a3, water lossesfrom small y-ions) just for ompleteness.In manual inspetion of a small number (10s) oflibrary spetra, the single most ommon explanationfor large unexplained peaks was unreognized iso-tope peaks. ByOni requires fairly tight toleraneson m/z and intensity in order to dismiss a peak asan isotope peak of another (explained) peak. If apeak does not �t within these toleranes, then it isonsidered unexplained. The seond most ommonexplanation was no explanation|expert inspetionould �nd no ion from the identi�ed peptide thatwould explain the peak.ACKNOWLEDGMENTSThe author thanks Don Kirkpatrik of Genenteh forthe Jurkat spetra, Christopher Beker of PPD, In.(Menlo Park) for the spiked mouse plasma spetra,and the NIH for grant GM085718, whih supportedthis work.Referenes1. D.C. Liebler. Introdution to Proteomis: Tools forthe New Biology. Humana Press, 2002.2. G. Siuzdak. The Expanding Role of Mass Spetrom-etry in Biotehnology . MCC Press, 2003.3. D.N. Perkins, D.J.C. Pappin, D.M. Creasy, and J.S.Cottrell. Probability-based protein identi�ation bysearhing sequene databases using mass spetrom-etry data. Eletrophoresis 20 (1999), 3551-3567.4. J.K. Eng, A.L. MCormak, and J.R. Yates, III. Anapproah to orrelate tandem mass spetral data ofpeptides with amino aid sequenes in a proteindatabase. J. Am. So. Mass Spetrom. 5 (1994),976{989.
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