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Ortholog assignment is a critical and fundamental problem in comparative genomics, since orthologs are considered to

be functional counterparts in different species and can be used to infer molecular functions of one species from those of

other species. MSOAR is a recently developed high-throughput system for assigning orthologs between closely related
species on a genome scale. It attempts to reconstruct the evolutionary history of input genomes in terms of genome

rearrangement and gene duplication events. It assumes that a gene duplication event inserts a duplicated gene into

the genome of interest at a random location (i.e., the random duplication model). However, in practice, biologists
believe that genes are often duplicated by tandem duplications, where a duplicated gene is located next to the original

copy (i.e., the tandem duplication model). In this paper, we develop MSOAR 2.0, an improved system for ortholog

assignment. For a pair of input genomes, the system first focuses on the tandemly duplicated genes of each genome
and tries to identify among them those that were duplicated after the speciation (i.e., the so-called inparalogs), using a

simple phylogenetic tree reconciliation method. For each such set of tandemly duplicated inparalogs, all but one gene

will be deleted from the concerned genome (because they cannot possibly appear in any ortholog pairs), and MSOAR
is invoked. Using both simulated and real data experiments, we show that MSOAR 2.0 is able to achieve a better

sensitivity and specificity than MSOAR. In comparison with two well-known genome-scale ortholog assignment tools,

the InParanoid program and the Ensembl ortholog database, MSOAR 2.0 shows the highest sensitivity. Although the
specificity of MSOAR 2.0 is slightly worse than that of InParanoid in the real data experiments, it is actually better

than that of InParanoid in the simulation tests. These experimental results demonstrate that MSOAR 2.0 is a highly
accurate tool for ortholog assignment.

1. Introduction

Orthologs and paralogs are two different types of
homologous genes that differ in the way that they
evolved. Orthologs are genes in different species that
evolved from a common ancestral gene due to speci-
ation events while paralogs are duplicated genes in
the same genome1 . To better understand the evolu-
tionary process, paralogs are further divided into two
subtypes: outparalogs and inparalogs2. With respect
to a given speciation event, outparalogs are genes
duplicated before the speciation while inparalogs are

genes duplicated after the speciation. Note that, the
orthology between two species is in general a many-
to-many relationship. In other words, for a pair of
genomes, an ortholog group consists of a pair of sets
of inparalogs, one from each genome. The inparalogs
in one set are co-orthologous to all the inparalogs
in the other. However, one may select a represen-
tative for each set of inparalogs (e.g., the exemplar
gene3) and define an ortholog pair for each ortholog
group consisting of the two representatives. Such an
ortholog pair may contain the two genes, one from
each set, that correspond the best in terms of their
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positions on the genomes4 or sequence similarity2.
This allows us to think of orthology as a one-to-one
relationship, which could help simplify the discus-
sion in many cases and makes it possible to evaluate
an ortholog assignment result against the orthology
benchmark defined by gene symbols (which is a one-
to-one relationship). Note that, once an ortholog
pair is defined for an ortholog group, all other pairs
of genes from the group will be regarded as false pos-
itives.

Clearly, it is easy to identify ortholog pairs be-
tween two species if the duplication history of the
genes on the two genomes is given (relative to their
speciation event). Unfortunately, this evolutionary
process is unknown. What we know is all the genes in
the contemporary genomes. In order to find the most
probable ortholog assignment between two genomes,
we need to reconstruct the true evolutionary history.

1.1. Existing Work on Ortholog
Assignment

There exist many algorithms and tools for or-
tholog assignment, including the well-known
COG system5, InParanoid2, 6, OrthoMCL7,
HomoloGene8, TreeFam9, PhyOP10, and Ensembl
Compara11, just to name a few. A recent compre-
hensive review on ortholog assignment tools in the
public domain can be found in Ref. 12. The first
four tools, i.e., COG, InParanoid, OrthoMCL and
HomoloGene, are basically sequence similarity based
methods that calculate pairwise similarity scores and
employ some simple clustering algorithms to identify
ortholog groups. For example, InParanoid assigns
main ortholog pairs as the pairs of protein sequences
with the highest bidirectional BLASTp scores (i.e.,
bidirectional best hits, or BBHs), and uses them as
“seeds” to identify inparalogs from both species by
applying a heuristic clustering algorithm2. TreeFam,
PhyOP and Ensembl Compara, on the other hand,
explicitly reconstruct phylogenetic trees to infer the
orthology relationship. Ensembl Compara, in par-
ticular, is a computational pipeline that combines
some clustering method with phylogenetic tree rec-
onciliation. It provides one-to-one, one-to-many,
and many-to-many orthology relationships for more
than 30 eukaryotic species11. However, none of these
methods take gene order and genome rearrangement

into account when they assign orthologs. It has been
shown that genome rearrangement is very common
between two closely related genomes13–16, and thus
the gene order information may help improve the
accuracy of ortholog assignment.

By combining both sequence similarity and gene
order information, a high-throughput ortholog as-
signment system called MSOAR4, 17 has recently
been developed. The system attempts to reconstruct
the evolutionary history of the genes in the input
genomes in terms of genome rearrangement and gene
duplication events, and tries to minimize the RD
(rearrangement and duplication) distance under the
parsimony principle. MSOAR considers four genome
rearrangement events including reversal (i.e., inver-
sion), translocation, fusion, and fission, and assumes
that a gene duplication event inserts a duplicated
gene into the concerned genome at a random loca-
tion (i.e., the random duplication model).

Figure 1 sketches an outline of the major algo-
rithmic steps in MSOAR. In particular, it attempts
to remove false ortholog pairs that involve genes ran-
domly duplicated after the speciation in the “noise”
gene pair detection step. Such a (false) ortholog pair
usually incurs a great cost in the rearrangement dis-
tance between the genomes, and thus we would be
able to reduce the RD distance by “uncoupling” (i.e.,
removing) the pair. However, in reality, randomly
duplicated genes only account for a part of all du-
plicated genes. Recent studies have shown that at
least 30% of duplicated genes are found next to their
original copies (i.e., in tandem positions)18, 19.

1.2. Gene Duplication Models

The importance of gene duplication in molecular evo-
lution is well established20, 21. However, the biologi-
cal mechanism behind gene duplication has been un-
known for quite many years. Recently, biologists pro-
posed three different mechanisms for gene duplica-
tion based on the size of the duplication and whether
they involve an RNA intermediate22, 23: retrotrans-
position, tandem duplication, and genome duplica-
tion.

Retrotransposition describes the integration of
a reverse transcribed mRNA into the genome in a
random manner (see Figure 2), and is the cause of
random duplications. Tandem duplication is one of
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Fig. 1. An outline of MSOAR.

the possible outcomes of “unequal crossover”, which
results from the homologous recombination between
paralogous sequences (see Figure 3). As a result,
genes are duplicated next to their original copies in
tandem arrays on the genome, which are known as
TAGs (i.e., tandemly arrayed genes)19. Genome du-
plication is probably due to the lack of disjunction
between daughter chromosomes after DNA replica-
tion, and occurs more in plants than in animals. Re-
cent studies show that there is another type of large-
scale duplications, segmental duplication, which in-
volves 1kb∼400kb nucleotides, though the molecular
mechanism of segmental duplication is still unclear23.
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1.3. An Improved Ortholog Assignment
System

Although MSOAR is able to identify most randomly
duplicated inparalogs in the “noise” gene pair detec-
tion step, it is incapable of catching inparalogs that
are produced by tandem duplications, which pre-
vents MSOAR from identifying false ortholog pairs
that involve two duplicated inparalogs in TAGs from
both genomes. This is further illustrated in the fol-
lowing figures. Figure 4 shows how MSOAR iden-
tifies randomly duplicated inparalogs and Figure 5
depicts an example showing MSOAR’s inability to
treat the inparalogs in a TAG correctly.
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Fig. 4. Genes a2 and a3 are randomly duplicated from gene
a1.
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Fig. 5. Genes a2, a3, a4, and a5 are tandemly duplicated

from gene a1.

In Figures 4 and 5, we assume that the genes
with the same letter from the two genomes represent
true orthologs, and all duplications happened after
the speciation in both genomes. For example, in Fig-



ure 5, (a1, a1) is a true ortholog pair while (a2, a3)
and (a4, a5) are not. The genes a2 and a3 in Fig-
ure 4 and genes a2, a3, a4 and a5 in Figure 5 are
all duplicated from gene a1 after the speciation, and
thus are inparalogs of a1. In both cases, MSOAR
first tries to assign orthology between all pairs of
genes and calculates the RD distance between the
two genomes. However, in the “noise” gene pair de-
tection step, MSOAR is able to identify the false or-
tholog pair (a2, a3) in Figure 4 since the RD distance
between the two genomes will decrease by 1 (i.e., 3
fewer reversals and 2 more duplications) if this pair
is removed. However, if the duplicated genes are in
TAGs, as shown in Figure 5, removing any of the
pairs (a2, a3) and (a4, a5) will not affect the number
of reversals but will increase the number of dupli-
cations by 2, thus increasing the RD distance be-
tween the two genomes. Since MSOAR tries to find
an assignment to minimize the RD distance between
the two genomes, it will correctly identify the false
ortholog pair (a2, a3) in Figure 4 while incorrectly
keep both false ortholog pairs (a2, a3) and (a4, a5) in
Figure 5 in the assignment.

In this paper, we incorporate the tandem dupli-
cation model into MSOAR, and develop an improved
system to assign orthologs, simply called MSOAR
2.0. The idea is to consider tandemly duplicated
genes first and try to identify the inparalogy rela-
tionship among them using a simple phylogenetic
tree reconciliation method. For each set of inpar-
alogs (on the same genome), all but one gene will be
deleted from the concerned genome before MSOAR is
invoked. Our experimental results demonstrate that
this pre-processing step could indeed remove many
false positives correctly and thus greatly improve the
specificity of MSOAR.

The rest of the paper is organized as follows.
The next section describes the details of MSOAR 2.0.
The experimental results are presented in Section 3.
Some concluding remarks are given in Section 4.

2. Methods

The pipeline of MSOAR 2.0 is outlined in Figure 6.
The main steps in the pipeline are explained in detail
in the following subsections.

2.1. Gene Family Definition and
Construction

A gene family is defined to be the set of genes
that are all descended from a common ancestral
gene4, 9. Given two input genomes, our improved
system starts by constructing gene families for all the
genes on both genomes. We mix all protein sequences
on both genomes and calculate the pairwise simi-
larity scores by applying an all-versus-all BLASTp
comparison24. By analyzing the results of BLASTp,
we obtain a square similarity matrix, whose elements
contain sequence similarity measurements for each
pair of proteins in the dataset. Gene families can
be calculated using the MCL (Markov clustering)
algorithm25 with default parameters.

Based on probability and graph flow theory,
MCL simulates random walks on a graph using
Markov matrices to determine the transition proba-
bilities among the vertices of the graph. Unlike many
other protein sequence clustering algorithms, MCL
is able to deal with the presence of multi-domain
proteins, promiscuous domains and fragmented pro-
teins, making it one of the most widely used cluster-
ing algorithms in bioinformatics25, 26. Some papers
use MCL directly to identify ortholog groups such as
OrthoMCL7, while some others use TribeMCL (an
extension of MCL) as a tool to find paralogs within
a genome19. In our system, we apply MCL to cluster
all homologous genes on both genomes (including all
possible orthologs and paralogs) into gene families.

2.2. dS-based Distance Matrix
Generation

In order to construct a gene tree, we need to measure
the pairwise distances within a gene family. This
is done by performing a multiple alignment using
ClustalW27 first and then calculating a distance ma-
trix for each gene family. Unlike most of the other
phylogenetic approaches that measure pairwise gene
distances based on amino acid substitutions, such as
TreeFam9, we choose to use the synonymous substi-
tution rate (i.e., the dS value) between two genes
as the distance proxy following Ref. 10. Since silent
mutations in coding DNA sequences do not lead to
changes in their protein products, synonymous sub-
stitutions are under less selective constraint than
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Fig. 6. An outline of MSOAR 2.0.

other coding sites. Therefore, they could more ac-
curately reflect the neutral mutation rate between
two genes.

In order to calculate the pairwise dS values,
we reverse translate each multiple protein sequence
alignment into a multiple codon alignment using the
program PAL2NAL28, which is a pattern matching
algorithm that maps each amino acid to its corre-
sponding codon sequence. Finally, the distance ma-
trix based on the synonymous substitution rate is cal-
culated by applying the YN00 program in the PAML
package29.

2.3. Gene Tree Reconstruction and
Duplication Dating

The gene tree for each gene family is reconstructed
by running the Neighbor-Joining algorithm30, which
is a pretty fast algorithm even for large gene families.
In the process of gene tree reconstruction, we manu-
ally introduce a gene that is equally distant from all
the other genes in a family as the outgroup in order
to root the gene tree for each family. Once a gene tree
is reconstructed, we need to label each of its inter-
nal nodes as either a duplication event or a speciation
event. This process is a special case of the gene dupli-
cation dating problem, or the problem of reconciling
a gene tree with a species tree. The phylogenetic tree
reconciliation problem has been studied extensively
in the literature, and many exact and heuristic algo-
rithms have been proposed (see, e.g., Ref. 31). In our
case, since only two species are involved, we propose
a straightforward algorithm to date the duplication
events in linear time.

To avoid postulating unnecessary gene losses, ev-
ery internal node with descendant genes from the
same species is labeled as a duplication event. Then,
the lowest internal nodes with descendant genes from
both species are labeled as speciation events. All an-
cestral nodes of the speciation nodes must be labeled
as duplication events since there are only two species.
An example of such a gene duplication dating algo-
rithm is shown in Figure 7.
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Fig. 7. An example of the gene duplication dating algo-

rithm. Node C is a duplication event since MA and MB are
both from the same species. Node B and D correspond to

speciation events since they have descendant genes from two
species. Node A is a duplication event since it is the ancestral
node of speciation nodes B and D.

2.4. Identification of Inparalogs in TAGs

After dating duplications in a gene tree, we may
deem each set of genes duplicated after the speci-
ation event as a potential set of inparalogs (e.g., MA

and MB in Figure 7). In order to confirm a potential
set of inparalogs, we need to consider the positions of
the genes on the concerned genome. If the potential
inparalogs are adjacent to each other on the genome,
i.e., they appear in the same TAG, then we define



them as inparalogs. For each such set of inparalogs,
at most one gene can be included in an ortholog pair.
Since these genes appear in tandem, it would make
no difference to the RD distance (which is the objec-
tive function of MSOAR) which of them is chosen to
represent the set in the ortholog pair. Thus, we will
keep the gene that has the highest similarity score
against any gene in the other genome and remove
the other inparalogs in the same set so they will not
be considered by MSOAR later on. If some poten-
tial inparalogs are separated by other genes on the
genome, they will all be kept at this step and dealt
with by MSOAR later on.

2.5. Invocation of MSOAR and
Post-Processing

After removing duplicated inparalogs in TAGs on
each genome, MSOAR is now invoked on the re-
maining genes. To further improve the performance
of MSOAR, we use a post-processing step. If we
consider the positions of the orthologs assigned by
MSOAR on each genome, we find that in many cases
a large consecutive block of assigned genes on one
genome are orthologous to a consecutive block of as-
signed genes on the other genome with the same or
reverse orientation. However, in some cases, there is
a single unassigned gene (called a “gap”) in each of
the blocks forming an orthologous pair, and the gap
appears at the same relative location in both blocks
(see Figure 8). If the sequences of the two genes in
the corresponding gaps are sufficiently similar (e.g.,
at least one of the genes is the best hit of the other),
then we deem that two genes as an ortholog pair and
add it to the output list.
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b1 c1 d1 e1 f1Block 1
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a1

d2 c2 a2b2f2 e2

b1 c1 d1 e1 f1Block 1
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Fig. 8. An example of the post-processing. Block 1 and

block 2 are orthologous blocks between two genomes, where

(a1, a2), (b1, b2), (d1, d2), (e1, e2), (f1, f2) are ortholog pairs

assigned by MSOAR. c1 and c2 are the corresponding gaps
that have not be assigned orthology. If one of them is the

best hit of the other, then we deem (c1, c2) as an additional
ortholog pair and add it to the output.

3. Experiments and Results

In order to test the performance of MSOAR 2.0, we
apply it to both simulated and real data, and com-
pare our results with MSOAR4, the popular ortholog
assignment tool InParanoid6, and the Ensembl or-
tholog database11.

3.1. Simulation Results

To assess the accuracy of ortholog assignment, we
simulate two input (single-chromosomal) genomes by
using random duplications, reversals, and point mu-
tations. The simulation is controlled by a set of 4
parameters (k, p, α, β), where k denotes the number
of duplications in the ancestral genome before the
speciation, p is the total number of genome-level evo-
lutionary events (i.e., duplications and reversals) on
each genome after the speciation, α is the percent-
age of duplications among the p events, and β is the
percentage of tandem duplications among all dupli-
cations.

The simulation is performed as follows. We first
generate an ancestral genome G with 100 genes, each
of which is a random sequence of 1,000 amino acids.
We randomly perform k duplications in G to ob-
tain another genome H. Then, a speciation happens
and the genome H evolves into two contemporary
genomes H1 and H2. The evolution from genome
H to each of the contemporary genomes involves p

evolutionary events, including p · α duplications and
p · (1 − α) reversals. Among all duplications, β of
them are tandem (i.e., we randomly choose a gene
and insert its copy next to it) while the others are
random (i.e., we randomly choose a gene and in-
sert its copy randomly into the genome). In order
to simulate the sequence change of each gene along
the evolutionary process, we set a constant mutation
rate µ = 1% to allow each gene on the genome to
have up to µ mutations of its amino acids between
every two evolutionary events.

Using H1 and H2 as input genomes, we run
MSOAR 2.0, MSOAR, and InParanoid separately.
From the outputs of the three programs, we can eas-
ily compare their prediction accuracies in terms of
sensitivity and specificity. Note that, InParanoid ac-
tually outputs ortholog groups. For each ortholog
group, we take the first pair of genes in the group as
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the ortholog pair (which is referred to as the main
ortholog pair in Ref. 2).

Since different parameters produce different in-
put genomes, which may affect the prediction ac-
curacies of the three programs, the parameters are
varied as follows. We use a default parameter set
and change the value of one parameter at one time.
Based on recent studies on the relative ratios of vari-
ous genome-level evolutionary events19, 32, we choose
to use (10, 50, 75%, 50%) as our default parameter
set. For each parameter set, 50 random datasets are

simulated and the average prediction accuracies of
the three programs are calculated. The performance
of the three programs on various parameter sets are
shown in Figures 9-12.

From Figures 9-12, we can see that parameter k

has little effect on the prediction accuracies of the
three programs as it only defines the number of out-
paralogs. Parameter p, on the other hand, has a
great impact on the performance of all the programs.
With the increase of p, the prediction accuracies of all
the three programs sharply decrease. This is because



when the number of evolutionary events increases,
it is more difficult for MSOAR and MSOAR 2.0 to
correctly reconstruct the evolutionary history based
on the parsimony principle. Also orthologous genes
may become less similar to each other for InPara-
noid to correctly identify them based on sequence
similarity. Parameter α defines the ratio between
duplications and reversals. As α goes up, the num-
ber of duplications increases while the number of
reversals decreases. It becomes easier for MSOAR
and MSOAR 2.0 to correctly identify reversals and
assign orthologs while it becomes harder for InPara-
noid to differentiate main orthologs from their dupli-
cated inparalogs due to the large number of duplica-
tions. Parameter β defines the ratio between tandem
duplications and random duplications. As the ratio
of tandem duplications goes up, the sensitivity and
specificity of MSOAR 2.0 and InParanoid increase
greatly while the performance of MSOAR remains
almost unchanged. Note that, when β > 80%, the
specificity of InParanoid even beats that of MSOAR.
This is due to MSOAR’s inability to deal with tan-
dem duplications. While MSOAR 2.0 may correctly
identify many inparalogs in TAGs based on phylo-
genetic analysis and remove most of them before as-
signing orthologs and InParanoid clusters most in-
paralogs into their ortholog group and outputs only
the main ortholog pair for each group, MSOAR tends
to assign inparalogs in TAGs as ortholog pairs, in-
troducing many false positive pairs.

The figures show that, in general, MSOAR 2.0
and MSOAR are more accurate than InParanoid in
terms of both sensitivity and specificity on randomly
simulated data. The sensitivity of MSOAR 2.0 is a
little bit better than that of MSOAR while its speci-
ficity is much higher than that of MSOAR.

3.2. Real Data Experiments

In order to evaluate the performance of MSOAR 2.0
on real data, we apply MSOAR 2.0 to several real
datasets. Since the human genome is the best an-
notated genome and has been used as the reference
genome to assign gene symbols for other species,
we use it as the “center” in our pairwise compar-
isons and compare it with four other mammalian
genomes, mouse, rat, chimpanzee, and macaque that
have been completely sequenced. Protein sequences,

transcripts, and gene locations for all five species,
human (Homo sapiens), mouse (Mus musculus), rat
(Rattus norvegicus), chimpanzee (Pan troglodytes)
and macaque (Macaca mulatta) (version 52, Decem-
ber 2008) were downloaded from Ensembl genome
browser (http://www.ensembl.org/). Genes anno-
tated as novel, supercontig, or mitochondrial are re-
moved, and only protein-coding genes with known
chromosome locations are kept. For genes with al-
ternative splicing variants, we use their longest tran-
scripts. Similar methods have been used in the pre-
vious studies19, 33. After such data pre-processing,
we obtained 21,164, 23,228, 22,490, 18,572, and
21,023 genes for human, mouse, rat, chimpanzee, and
macaque, respectively.

3.2.1. Results on Human, Mouse and Rat

For the ortholog assignments between human and
mouse and between human and rat, Table 1 shows
the contributions of each major step in MSOAR
2.0. The phylogenetic analysis step is able to iden-
tify more than 1,000 duplicated inparalogs in TAGs
in each species (1,118/2,524 for human-mouse and
1,211/2,030 for human-rat), and remove most of
them before MSOAR is invoked. Then orthology
is assigned by MSOAR on the remaining genes on
each genome. Finally, in the post-processing step,
MSOAR 2.0 is able to catch a few hundred ortholog
pairs (125 for human-mouse and 128 for human-rat)
from the “gaps” between consecutive ortholog blocks
on each genome.

In order to validate the prediction results of
MSOAR 2.0, we choose to use gene symbols. Gene
symbols are used by researchers to refer to a spe-
cific gene of interest across species. Each sym-
bol for a species should be unique and each gene
within a genome should be given only one ap-
proved gene symbol34. The nomenclature of a
gene is done by the nomenclature committees for
each species. At present, there are only three offi-
cial nomenclature committees in the world, for hu-
man, mouse, and rat respectively. So only these
three species have official gene symbols. To obtain
the most accurate gene symbol lists, we download
the most recent gene symbols for human, mouse,
rat from HGNC (http://www.genenames.org/),
MGI (http://www.informatics.jax.org/), and RGD



Table 1. Contributions of the major steps in MSOAR 2.0.

Pair of Species
Inparalogs in TAGs Identified by

Phylogenetic Analysis
Orthologs Assigned by

MSOAR
Orthologs Assigned after

Post-Processing

human vs mouse 1,118 / 2,524 16,635 16,760

human vs rat 1,211 / 2,030 15,781 15,909

(http://rgd.mcw.edu/) respectively, all of which are
the official nomenclature committees for the involved
species.

To compare the performance of MSOAR 2.0
with MSOAR, InParanoid and the Ensembl ortholog
database, we consider the gene symbols of each out-
put ortholog pair. Some genes may not have offi-
cial gene symbols. Some symbols may not be mean-
ingful, e.g., when they are composed of “LOC” and
gene ID, or when the gene functions have not yet
been validated. In the latter case, the genes only
have transcript identifiers (e.g., gene symbols with
the prefix “OTTMUSG” or the suffix “RIK” in the
mouse genome). For each pair of orthologs, if both
genes have identical official gene symbols, we count
it as a true positive pair (i.e., TP). If the genes have
different official gene symbols, we count it as a false
positive pair (i.e., FP). If only one gene in the pair
has an official gene symbol and another gene on the
other genome (which is not in the pair) has the same
gene symbol, then this pair is also considered as a
false positive pair. For all other cases, we deem the
pair as an unknown pair and ignore it in the accuracy
assessment. We also calculate the assignable true
ortholog pairs between two species by counting the
number of identical gene symbols. The performance
of the four methods validated using gene symbols is

shown in Table 2. The actual ortholog assignment
results of MSOAR 2.0 can be downloaded from the
MSOAR website (http://msoar.cs.ucr.edu/).

Table 2 suggests that MSOAR 2.0 achieves the
best sensitivity among the four programs although
its specificity is slightly worse than that of InPara-
noid. A detailed analysis on differences in the or-
tholog assignment results of the four programs is
given in Table 3.

Since InParanoid is a sequence similarity based
method, all of the orthologs assigned by InParanoid
are BBHs. Although many of the true orthologs
may be indeed BBHs, some of them are not. In
fact, more than 80% of the true ortholog pairs as-
signed by MSOAR 2.0 but missed by InParanoid
in the human-mouse and human-rat comparisons
(412/491 for human-mouse and 401/430 for human-
rat) are not BBHs as shown in Table 3 (the first two
columns).

While we define orthology between two genomes
as a one-to-one relationship, the Ensembl ortholog
database presents orthology in general as a many-to-
many relationship. Thus, for each ortholog group, it
outputs all pairs of genes consisting of one gene from
one genome and another from the other. As a result,
the specificity of the Ensembl ortholog database is
quite low because each large ortholog group may re-

Table 2. Comparison of the performance of four programs using gene symbol validation. Again, to assess the accuracy of
InParanoid, we take the first pair of genes in each ortholog group (i.e., the main ortholog pair of the group) as an ortholog

pair. For the Ensembl ortholog database, we directly download all the ortholog pairs from Ensembl Biomart Browser,
which includes one-to-one, one-to-many, and many-to-many orthology relationships.

Pair of Species Program Assignable Total Assigned True Positives Unknowns Sensitivity Specificity

human

vs
mouse

InParanoid 14,341 16,058 13,216 1,394 92.16% 90.13%
Ensembl 14,341 20,670 13,619 2,850 94.97% 76.43%

MSOAR 14,341 16,769 13,528 1,554 94.33% 88.91%

MSOAR 2.0 14,341 16,760 13,629 1,542 95.04% 89.56%

human

vs
rat

InParanoid 12,688 15,197 11,750 1,529 92.61% 85.97%
Ensembl 12,688 18,814 12,004 2,490 94.61% 73.54%

MSOAR 12,688 15,883 11,970 1,723 94.34% 84.53%

MSOAR 2.0 12,688 15,909 12,074 1,730 95.16% 85.15%



Table 3. Differences between the ortholog pairs assigned by MSOAR 2.0 and those by the other three programs. (a)

This column lists the number of TPs found by MSOAR 2.0 but missed by InParanoid. (b) This column lists the number
of TPs in the previous column that are not BBHs. (c) This column lists the number of FPs found by Ensembl but not

by MSOAR 2.0. (d) This column lists the number of FPs in the previous column that are inparalogs occurring in TAGs.

(e) This column lists the number of FPs found by MSOAR but not by MSOAR 2.0. (f) This column lists the number of
FPs in the previous column that are inparalogs occurring in TAGs.

Pair of Species

MSOAR 2.0
vs InParanoid

MSOAR 2.0
vs Ensembl

MSOAR 2.0
vs MSOAR

TPs in
M2-Ia

Not
BBHsb

FPs in
E-M2c

Inparalogs
in TAGsd

FPs in
M-M2e

Inparalogs
in TAGsf

human vs mouse 491 412 2,981 2,614 314 293

human vs rat 430 401 2,646 2,295 257 245

sult in many false positives. What is interesting is
that even though it outputs a large number of or-
tholog pairs, its sensitivity is still a little bit worse
than that of MSOAR 2.0 in both human-mouse and
human-rat comparisons as shown in Table 2. It is
interesting to observe that most of the false positive
pairs output by Ensembl but not by MSOAR 2.0
(i.e., 2,614/2,981 for the human-mouse comparison
and 2,295/2,646 for the human-rat comparison) were
actually found by MSOAR 2.0 to be inparalogs that
appear in some TAGs, as shown in Table 3 (the two
middle columns).

The last two columns of Table 3 clearly demon-
strate that MSOAR 2.0 achieves a better specificity
than MSOAR because of its treatment of TAGs,
since most of the false positives output by MSOAR
but not by MSOAR 2.0 (293/314 and 245/257 for
the human-mouse and human-rat comparisons, re-
spectively) were identified as inparalogs in TAGs by
MSOAR 2.0.

3.2.2. Results on Human, Chimpanzee and

Macaque

Since chimpanzee and macaque do not have offi-
cial gene symbols, we only compare our assignment
results with those of InParanoid and the Ensembl
ortholog database. Figures 13 and 14 use Venn
diagrams to show the commonality and difference
among the ortholog pairs assigned by MSOAR 2.0,
InParanoid, and the Ensembl ortholog database. We
see that the three programs share more than 75%
of the ortholog pairs. InParanoid outputs the least
number of unique ortholog pairs while Ensembl has
the most. More than 70% of the ortholog pairs

unique to Ensembl are found to be inparalogs in
TAGs (result not shown).

573189

MSOAR 2.0

56 2,134

170

17,081

156

InParanoid Ensembl

Fig. 13. Orthologs as-

signed between human and

chimpanzee.

MSOAR 2.0

152

432

2,592

506 597

225

15,521

EnsemblInParanoid

Fig. 14. Orthologs as-

signed between human and

macaque.

Table 4 shows the number of ortholog pairs out-
put by MSOAR 2.0 that are shared by at least one of
the other two programs. We observe that the closer
the compared species is to human, the more support
the result of MSOAR 2.0 receives from the other pro-
grams. For a pair of very closely related species,
such as human and chimpanzee, the ortholog pairs
assigned by MSOAR 2.0 have more than 99% sup-
port from at least one of the other two programs,
which is consistent with our expectations and con-
firms that MSOAR 2.0 is a highly accurate tool for
ortholog assignment between closely related species.

Finally, we also observe that the number of in-
paralogs found in human by MSOAR 2.0 increases
with the increase of evolutionary distance between
human and the other species, as shown in Table 5.
This is consistent with the definition of inparalogs.



Table 4. Support of the MSOAR 2.0 ortholog pairs by the other two programs.

Support human vs chimpanzee human vs macaque human vs mouse human vs rat

By both programs 94.83% 91.00% 90.08% 87.97%
By at least one program 99.06% 97.47% 97.05% 96.79%

Table 5. Inparalogs found in human and the other species by MSOAR 2.0.

Inparalogs found by MSOAR 2.0 human vs chimpanzee human vs macaque human vs mouse human vs rat

Inparalogs in human 3,151 4,108 4,404 5,255
Inparalogs in the other species 559 3,967 6,468 6,581

4. Conclusion and Discussion

In this paper, we have incorporated a new gene
duplication model, the tandem duplication model,
into MSOAR, and developed an improved system of
ortholog assignment by combining gene phylogeny
and genome rearrangement. By comparison with
MSOAR, InParanoid, and the Ensembl ortholog
database on both simulated and real data, we showed
that MSOAR 2.0 achieves the best overall predic-
tion accuracy. Although MSOAR 2.0 has a slightly
lower specificity as compared to InParanoid on real
data using gene symbols as the benchmark (e.g., in
the human-mouse comparison, 90.13% for InPara-
noid vs. 89.56% for MSOAR 2.0), it nevertheless
identified several hundred of true ortholog pairs that
were missed by InParanoid. Because the majority of
the “missed” orthologs are not BBHs, which are what
the InParanoid assignment is based on, MSOAR 2.0
clearly addresses a weakness of InParanoid. More-
over, MSOAR 2.0 shows a better specificity in the
simulation tests. Note that, MSOAR 2.0 also recon-
structs the evolutionary history in terms of gene du-
plication and genome rearrangement, which could be
of independent interest. Although Ensembl tends to
assign a higher number of ortholog pairs than both
InParanoid and MSOAR 2.0, MSOAR 2.0 outper-
forms it in terms of not only specificity but also sen-
sitivity.

We evaluated the performance of the programs
by computer simulations and gene symbols. How-
ever, simulations could be limited because the real
evolutionary processes are much more complicated
than what we can simulate. Furthermore, the use of
gene symbols is not always feasible as many species
do not have standard gene symbol assignment. We

need to develop additional validation methods such
as incorporating other available information, e.g.,
gene functions. In addition, with the discovery of
more mechanisms of gene evolution, new models
of gene duplication (e.g., segmental duplications)
and genome operations (e.g., double cut and join
or DCJ), have been proposed. How to incorporate
these new gene duplication models and operations
into MSOAR 2.0 is our next challenge.
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