
RANKING GENES BY RELEVANCE TO A DISEASE

Shivani Agarwal 1∗ and Shiladitya Sengupta 2,3

1 Department of Electrical Engineering and Computer Science,
2 Harvard-MIT Division of Health Sciences and Technology,

Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
∗Email: shivani@mit.edu

3Department of Medicine,
Brigham and Women’s Hospital, Harvard Medical School,

Boston, MA 02115, USA
Email: shiladit@mit.edu

The problem of identifying key genes that are involved in a particular disease is of fundamental importance in

biology and medicine. Given the increasing availability of a variety of gene-related biological data sources, ranging
from microarray expression data to protein-protein interaction data, a promising approach is to use bioinformatics

methods that can analyze this data and rank genes based on potential relevance to a disease; such methods can be
invaluable in helping to prioritize genes for further biological study. Recently, the problem of ranking objects has

gained considerable attention in machine learning and data mining; ranking problems arise in a variety of domains

ranging from document retrieval to collaborative filtering, and a variety of new learning methods have been developed
that directly optimize ranking performance. Here we propose for the first time the use of such ranking methods for

the problem of ranking genes. We illustrate this approach on microarray data for leukemia and colon cancer; in both

cases, the ranking methods we use identify several genes that were not identified by previous methods, including some
novel genes that could potentially evolve as targets for drug development. Our study suggests that ranking methods

in machine learning could emerge as a powerful tool for mining gene-related data sources for the identification of genes

relevant to a particular disease.

1. INTRODUCTION

One of the greatest challenges in post-genome medi-
cal research is to identify genes that are involved in
a particular disease27. Identification of such genes
not only provides a better understanding of the dis-
ease, but is also often the first step in developing
treatments for it.

With the rapid growth in biological data sources
containing gene-related information, including for
example sequence information, microarray expres-
sion data, functional annotation data, protein-
protein interaction data, and the biological and med-
ical literature, there has been much interest in recent
years in developing bioinformatics approaches that
can analyze this data and help in the identification
of important genes. In particular, a common goal is
to rank or prioritize genes such that those relevant
to the disease under study are likely to appear at
the top of the ranking; the proteins corresponding to

the top few genes can then be subjected to biologi-
cal tests to elucidate their structural and functional
properties, with a good chance that many of those
tested will emerge as targets for the development of
new drugs or find use as disease markers that can be
helpful in diagnosis.

Over the last few years, several methods have
been proposed for ranking or prioritizing genes by
relevance to a disease. These methods fall into two
broad classes. The first class of methods uses mostly
microarray expression data; these methods focus on
identifying genes that are differentially expressed in
a disease, and use simple statistical measures such as
the t-statistic17, 29, 31 or related classification meth-
ods in machine learning18, 21 to rank genes based on
this property. Related to these are methods that aim
to improve an initial ranking obtained from expres-
sion data by augmenting it with a network structure
derived from other data sources26, 25. The second
class of methods is more general, often making use

∗Corresponding author.



of a variety of data sources; these methods start with
some existing knowledge of ‘training’ genes already
known to be related to the disease under study, and
directly or indirectly rank the remaining genes based
on their similarity to these training genes14, 2, 10, 9.

Here we take a different approach, inspired by
recent developments on ranking methods in ma-
chine learning. In particular, the problem of rank-
ing objects has recently gained much attention in
machine learning, data mining, and statistics, both
due to its widespread applications in information
retrieval and related areas, and due to the fact
that it is a mathematically distinct problem from
the classical learning problems of classification and
regression12, 19, 20, 15, 13, 4, 28, 11, 5. We show here
that the gene ranking problem is naturally formu-
lated as a particular form of ranking problem termed
the bipartite ranking problem15, 4. This allows us to
exploit existing knowledge of both ‘positive’ training
genes that are known to be related to the disease
under study, and ‘negative’ training genes that are
known to be unrelated; learning methods that di-
rectly optimize ranking performance are then used
to rank the remaining genes such that genes relevant
to the disease are likely to be ranked higher than
those that are not relevant.

The overall approach of using ranking methods
in machine learning is highly flexible and can be used
in conjunction with multiple data sources. We illus-
trate the approach on microarray expression data for
leukemia and colon cancer. Even using only microar-
ray data, in both cases, the ranking returned by our
approach identifies some novel genes that were not
identified by previous methods, and that can poten-
tially evolve as targets for drug development.

The rest of the paper is organized as follows:
Section 2 describes in greater detail previous work
on the gene ranking problem; in Section 3, we de-
scribe our formulation of the problem as a bipartite
ranking problem in machine learning. This is fol-
lowed by our experimental results in Section 4. We
conclude with a discussion in Section 5.

2. PREVIOUS WORK

As discussed briefly above, several methods have
been proposed for ranking or prioritizing genes based
on relevance to a disease. These methods fall into

two broad classes: methods in the first class use
mostly microarray expression data, and rank genes
based on the extent to which they are differentially
expressed in the disease; methods in the second class
often use a variety of data sources, and rank genes
based on their similarity to a set of ‘training’ genes
already known to be related to the disease. Here we
discuss these methods in greater detail.

Consider first the problem of ranking genes using
microarray expression data. Such data can be rep-
resented as an expression matrix X = [xik] ∈ RN×d,
where N is the number of genes whose expression
levels are measured, d is the number of biological
samples (e.g., tissue samples from different patients,
or different experimental conditions), and xik is the
expression level of gene i in sample k. We shall use
xi ∈ Rd to denote the expression vector of gene i

across the d samples, and x̃k ∈ RN to denote the
expression vector of sample k across the N genes.
The problem of finding a ranking of genes can then
be viewed as a problem of finding a ranking func-
tion f : Rd→R that assigns a real-valued score f(xi)
to gene i; gene i is ranked higher than gene j if
f(xi) > f(xj).

The first class of methods is designed for the
above problem and assumes that the biological sam-
ples are of two different types, so that with each sam-
ple k, there is an associated label yk ∈ {−1, 1} de-
noting its type (e.g., disease or normal, or one of
two different forms of a disease). The function f is
then chosen to rank genes based on their ability to
distinguish between the two types of samples. For
example, in several studies17, 29, 31, the score f(xi)
assigned to gene i is taken to be some measure of
correlation between the gene’s expression vector xi
and the label vector y, such as the t-statistic; high
scores then correspond to genes that have markedly
different expression levels across the two types of
samples. In some other studies18, 21, classification
methods in machine learning are used in the fol-
lowing indirect manner: the sample vectors x̃k to-
gether with their binary labels yk are provided as
training examples to a classification algorithm that
learns a linear classifier h : RN→{−1, 1} of the form
h(x̃) = sign(w̃ · x̃ + θ), where w̃ ∈ RN , θ ∈ R; the
goal in learning the classifier is actually to classify
accurately new biological samples, but an implicit



ranking over the genes is obtained by viewing each
weight w̃i in the classifier as a measure of the contri-
bution of gene i, and taking f(xi) = |w̃i|.

Related to the above methods are methods that
aim to improve an initial ranking obtained from ex-
pression data by augmenting it with a network struc-
ture derived from other data sources. For exam-
ple, the GeneRank algorithm of Morrison et al.26,
which is based on the PageRank algorithm used by
the Google search engine, starts with an initial rank-
ing of genes based on differential expression scores,
which could be derived using any of the above meth-
ods, and then improves this ranking by propagating
scores across genes in the network; in this case, the
network was derived from Gene Ontology (GO) an-
notation data30. Similarly, the algorithm of Ma et
al.25 improves an initial ranking of genes obtained
from expression data using a Markov random field
approach that effectively constrains the ranking to
assign similar scores to genes that are closely con-
nected in the network; in this case, the network was
derived from protein-protein interaction data.

The second class of methods focuses on ranking
genes by their similarity to a set of ‘training’ genes
already known to be related to the disease, and can
often use a variety of data sources. For example,
in a study by Freudenberg and Propping14, diseases
known to be caused by certain genes are first grouped
into clusters according to their phenotypic similarity.
Given a target disease, all disease clusters similar
to the target disease are identified, again based on
phenotypic similarity; the genes known to cause the
diseases in these clusters are then viewed as ‘train-
ing’ examples for the target disease. The remaining
genes are then ranked based on their similarity to
these genes; in this case, similarity between genes
was measured using GO annotations. In a more re-
cent study by Aerts et al.2, multiple data sources are
used, including microarray expression data, protein-
protein interaction data, and the biomedical litera-
ture. For each data source, the similarity of each
gene to a set of ‘training’ genes known to be re-
lated to the target disease is computed using a data-
specific similarity measure; this results in a distinct
ranking for each data source. These rankings are
then combined into a single overall ranking using or-
der statistics. A number of other recent studies10, 9

have used protein-protein interaction data together
with network-based methods in order to rank genes
based on an initial set of ‘training’ genes related to
the disease of interest.

There are also some methods that rank or pri-
oritize genes based on their overall likelihood of be-
ing involved in some disease in general (without ref-
erence to a specific disease)23, 1; we do not discuss
these methods here since our goal is to identify genes
involved in a particular disease.

Below we present an alternative approach to
ranking genes that is based on recent developments
on ranking methods in machine learning. In partic-
ular, we show that the gene ranking problem can be
formulated naturally as a particular form of ranking
problem known as the bipartite ranking problem15, 4;
this allows us to exploit existing knowledge of both
‘positive’ training genes that are known to be related
to the disease under study, and ‘negative’ training
genes that are known to be unrelated, and to auto-
matically learn from these training examples a rank-
ing over the remaining genes that tends to rank rel-
evant genes higher than irrelevant ones.

3. FORMULATION AS A BIPARTITE
RANKING PROBLEM

As discussed above, the problem of ranking objects
has recently gained considerable attention in ma-
chine learning, data mining, and statistics, both
due to its widespread applications in information re-
trieval and related areas, and due to the fact that
ranking is a mathematically distinct problem from
the classical learning problems of classification and
regression12, 19, 20, 15, 13, 4, 28, 11, 5.

In the general ranking problem in machine learn-
ing, one is given examples of order relationships
among instances in some instance space X , and the
goal is to learn from these examples a ranking or
ordering over X that ranks accurately future in-
stances. In the most general setting of the problem,
the learner is given training examples in the form
of ordered pairs of instances (x, x′) ∈ X × X , each
labeled with a ranking preference r ∈ R, with the
interpretation that x is to be ranked higher than x′

if r > 0, and lower than x′ if r < 0 (r = 0 in-
dicates no ranking preference between the two in-
stances); the penalty for mis-ordering such a pair is



proportional to |r|. Given a finite number of such ex-
amples S = ((x1, x

′
1, r1), . . . , (xm, x′m, rm)), the goal

is to learn a real-valued ranking function f : X→R
that ranks accurately future instances; f is consid-
ered to rank an instance x ∈ X higher than an in-
stance x′ ∈ X if f(x) > f(x′), and lower than x′ if
f(x) < f(x′).

A particular setting of the ranking problem that
has been investigated in some detail in recent years,
and that will be useful for our purposes, is the bi-
partite setting15, 4. In the bipartite ranking prob-
lem, instances come from two categories, positive and
negative; the learner is given examples of instances
labeled as positive or negative, and the goal is to
learn a ranking in which positive instances are ranked
higher than negative ones. Such ranking problems
arise, for example, in information retrieval, where
one is interested in retrieving documents from some
database that are relevant to a given topic; in this
case, the training examples given to the learner con-
sist of documents labeled as relevant (positive) or
irrelevant (negative), and the goal is to rank the re-
maining documents such that relevant documents are
ranked higher than irrelevant ones.

More formally, in the bipartite ranking problem,
the learner is given a training sample (S+, S−) con-
sisting of a sequence of ‘positive’ examples S+ =
(x+

1 , . . . , x
+
m) and a sequence of ‘negative’ examples

S− = (x−1 , . . . , x
−
n ), the x+

i and x−j being instances in
some instance space X , and the goal is to learn a real-
valued ranking function f : X→R that ranks future
positive instances higher than negative ones. The bi-
partite ranking problem is easily seen to be a special
case of the general ranking problem described above,
since a training sample (S+, S−) ∈ Xm × Xn in the
bipartite setting can be viewed as consisting of mn
examples of the form (x+

i , x
−
j , 1) for i ∈ {1, . . . ,m},

j ∈ {1 . . . , n}, with a constant penalty for mis-
ranking any positive-negative pair of instances.

Consider now the problem of ranking genes
based on relevance to a particular disease. For sim-
plicity in this paper we focus on the problem of rank-
ing genes using microarray expression data, although
our methods can be applied using other data sources
as well; indeed, as we discuss in Section 5, our meth-
ods can also be applied in conjunction with multiple
data sources. Recall that we represent a microarray

data set as an expression matrix X = [xik] ∈ RN×d,
where N denotes the number of genes, d the number
of biological samples, and xik the expression level of
gene i in sample k. It turns out that the problem of
ranking genes in this setting can be formulated natu-
rally as a bipartite ranking problem. In this formula-
tion, the instances to be ranked are genes, each rep-
resented by a d-dimensional expression vector; thus
the instance space X is simply Rd. The biologist pro-
vides a few examples S+ = (x+

1 , . . . ,x
+
m) ∈ (Rd)m of

(expression vectors corresponding to) genes that are
known to be relevant to the disease, and a few ex-
amples S− = (x−1 , . . . ,x

−
n ) ∈ (Rd)n of (expression

vectors corresponding to) genes known to be irrele-
vant. Any learning algorithm for the bipartite rank-
ing problem can then be used to automatically learn
from these examples a ranking function f : Rd→R
that tends to rank relevant genes higher than irrele-
vant ones.

In our experiments, we used the bipartite Rank-
Boost algorithm of Freund et al.15, which is based
on the principles of boosting16. An outline of the
algorithm is given in Figure 1. The algorithm takes
as input a training sample of the form (S+, S−) ∈
Xm × Xn, where X is the instance space and S+ =
(x+

1 , . . . , x
+
m), S− = (x−1 , . . . , x

−
n ), and produces as

output a ranking function f : X→R that is a lin-
ear combination of some ‘weak’ ranking functions
chosen from some base class Fbase. The algorithm
works in rounds and maintains a distribution Dt

over the set of positive-negative pairs
{

(x+
i , x

−
j ) :

i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}
}

. On each round t, it
chooses a weak ranking ft ∈ Fbase and a real num-
ber αt ∈ R, and updates the distribution Dt such
that instance pairs (x+

i , x
−
j ) that are mis-ranked by

ft are weighted more heavily by Dt+1; the extent of
the update is determined by αt (typically, αt > 0).
The final ranking is given by a weighted combination
of the weak rankings chosen in different rounds.

As discussed above, the instance space X in our
gene ranking problem is Rd. The base function class
Fbase we use contains the d coordinate projection
functions f (k) : Rd→R, given by f (k)(x) = xk for
each k ∈ {1, . . . , d}. Thus on each round t, our weak
learner chooses ft : Rd→R to be ft(x) = xkt

for
some kt ∈ {1, . . . , d}. In accordance with the theory



Algorithm RankBoost (Bipartite)

Input: (S+, S−) ∈ Xm ×Xn.

Initialize: D1(x+
i , x

−
j ) =

1
mn

for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.
For t = 1, . . . , T :

• Train weak learner using distribution Dt; get weak ranking ft : X→R.

• Choose αt ∈ R.

• Update: Dt+1(x+
i , x

−
j ) =

1
Zt
Dt(x+

i , x
−
j ) exp

{
−αt

(
ft(x+

i )− ft(x−j )
)}

,

where Zt =
m∑
i=1

n∑
j=1

Dt(x+
i , x

−
j ) exp

{
−αt

(
ft(x+

i )− ft(x−j )
)}

.

Output the final ranking: f(x) =
T∑
t=1

αtft(x).

Fig. 1. The bipartite RankBoost algorithm of Freund et al.15

behind RankBoost15, kt is chosen as

kt = arg min
k∈{1,...,d}

{
min
α∈R

m∑
i=1

n∑
j=1

Dt(x+
i ,x

−
j )e−α(x+

ik−x
−
jk)

}
,

and αt is then chosen as

αt = arg min
α∈R

m∑
i=1

n∑
j=1

Dt(x+
i ,x

−
j )e−α(x+

ikt
−x−jkt

) .

As in the case of the AdaBoost algorithm for
classification16, with the above choice of kt and αt,
the bipartite RankBoost algorithm can be viewed as
performing coordinate descent to minimize an objec-
tive function that forms a convex upper bound on the
ranking error with respect to the training sample28.
Our final ranking function f : Rd→R is a linear func-
tion given by f(x) = w ·x, where wk =

∑
{t:kt=k} αt

for each k ∈ {1, . . . , d}.

4. EXPERIMENTS

We evaluated our gene ranking approach on two pub-
licly available microarray data sets: a leukemia data
set17 and a colon cancer data set7. Below we de-
scribe these data sets (Section 4.1), the methodology
we used for selecting positive and negative training
genes (Section 4.2), and our results (Section 4.3).

4.1. Data Sets

We conducted experiments on two publicly available
microarray data sets. The first of these is a leukemia
data set that was first used in a study by Golub et
al.17 and was subsequently made available by the
authors of that study.a The data set contains ex-
pression levels of 7129 genes across 72 samples. The
samples in this data set correspond to tissue samples
obtained from different leukemia patients; of the 72
samples, 25 are from acute myeloid leukemia (AML)
and 47 from acute lymphoblastic leukemia (ALL).
In many studies involving this data set, the goal
has been to classify samples as belonging to AML
or ALL. In our case, the goal was to rank genes by
relevance to leukemia.

The second data set is a colon cancer data set
that was first used by Alon et al.7 and was subse-
quently made available.b The data set contains ex-
pression levels of 2000 genes across 62 samples. The
samples in this data set correspond to tissue samples
obtained from patients with and without colon can-
cer; of the 62 samples, 40 are from tumor tissue and
22 from normal tissue. In many studies involving
this data set, the goal has been to classify samples

aThis data set is available from http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi .
bThis data set is available from http://microarray.princeton.edu/oncology/affydata/index.html .



Table 1. Markers for AML and ALL were selected as positive training genes for

the leukemia data set; markers for colon cancer were selected as positive training

genes for the colon cancer data set.

Markers for AML Myeloperoxidase

CD13
CD33

HOXA9 Homeo box A9

MYBL2

Markers for ALL CD19

CD10 (CALLA)
TCL1 (T cell leukemia)

C-myb

Deoxyhypusine synthase

Markers for Phospholipase A2

colon cancer Keratin 6 isoform

Protein-tyrosine phosphatase PTP-H1
Transcription factor IIIA

Viral (v-raf) oncogene homolog 1
Dual specificity mitogen-activated protein kinase kinase 1

Transmembrane carcinoembryonic antigen

Oncoprotein 18
Phosphoenolpyruvate carboxykinase

Extracellular signal-regulated kinase 1

as tumor or normal. Again, in our case, the goal was
to rank genes by relevance to colon cancer.

4.2. Selection of Training Genes

In order to rank genes using our bipartite ranking
framework, we selected for each data set a small
number of training genes based on existing biolog-
ical knowledge.

Of the 7129 genes in the leukemia data set, we
selected 10 genes as positive training examples S+

and 157 genes as negative training examples S−.
The 10 genes selected as positive examples are all
known classical markers for either AML or ALL;
these are shown in Table 1.c Of the 157 genes se-
lected as negative examples, 59 are internal controls
available on the Affymetrix chip (indicated in the
data set); the rest are genes that are involved in a va-
riety of physiological cellular functions, including for
example house-keeping genes, genes coding for ion
channels and essential enzymes, hormone-associated
genes, and genes involved in cellular transport and a

variety of other focal, cell-specific functions.
Similarly, of the 2000 genes in the colon cancer

data set, we selected 10 genes as positive training ex-
amples S+ and 56 genes as negative training exam-
ples S−. The 10 genes selected as positive examples
are all known markers for colon cancer; these are also
shown in Table 1. Of the 56 genes selected as neg-
ative examples, 8 are internal controls; the rest are
again genes that are involved in a variety of physio-
logical cellular functions as above.

4.3. Results

Using the training genes described above, a rank-
ing over the remaining genes in each data set was
learned using the bipartite RankBoost algorithm.
In each case, in order to assess the quality of the
ranking produced by our method, we performed an
extensive validation with the biomedical literature
to determine the biological relevance of the 25 top-
ranked genes. Our main resource for this literature
search was PubMedd, an online indexing service for

cA marker for a disease is a gene whose expression levels are distinctly altered in the disease. Markers are useful in diagnosis of

diseases and in monitoring of therapeutic outcomes.
dPubMed website: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed .
eEntrez Gene website: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene .



Table 2. Leukemia results: 25 top-ranked genes. Relevance summary: � Known marker; ♦ Po-

tential marker; � Known therapeutic target; � Potential therapeutic target; × No link found. See

Supplementary Material6 for detailed analyses of the relevance of these genes. Ranks of the genes in
rankings based on the t-statistic29 and Pearson correlation2 are shown for comparison; see text for

details.

Gene Relevance t-Statistic Pearson

Summary Rank Rank

1. KIAA0220 � 6628 2461

2. G-gamma globin � 3578 3567

3. Delta-globin � 3663 3532
4. Brain-expressed HHCPA78 homolog � 6734 2390

5. Myeloperoxidase � 139 6573

6. Probable protein disulfide isomerase ER-60 precursor � 6650 575
7. NPM1 Nucleophosmin � 405 1115

8. CD34 � 6732 643

9. Elongation factor-1-beta × 4460 3413
10. CD24 � 81 1

11. 60S ribosomal protein L23 � 1950 73

12. 5-aminolevulinic acid synthase � 4750 3351
13. HLA class II histocompatibility antigen � 5114 298

14. Epstein-Barr virus small RNA-associated protein � 6388 1650
15. HNRPA1 Heterogeneous nuclear ribonucleoprotein A1 � 4188 1791

16. Azurocidin � 162 6789

17. Red cell anion exchanger (EPB3, AE1, Band 3) � 3853 4926
18. Topoisomerase II beta � 17 3

19. HLA class I histocompatibility antigen × 265 34

20. Probable G protein-coupled receptor LCR1 homolog � 30 62
21. HLA-SB alpha gene (class II antigen) × 6374 317

22. Int-6 ♦ 3878 912

23. Alpha-tubulin � 5506 1367
24. Terminal transferase � 6 9

25. Glycophorin B precursor ♦ 3045 5668

life sciences literature. We also performed database
searches using Entrez Genee, an online tool that al-
lows one to search specifically for information related
to a given gene, and BLASTf , a sequence alignment
tool that allows one to search for DNA sequences
similar to a given sequence (and to thus find genes
that are homologous to a given gene)8.

Table 2 lists the top 25 genes in the ranking
learned for leukemia, together with a summary of
their biological relevance to leukemia as could be de-
termined from validation with the biomedical liter-
ature. Detailed analyses of the relevance of these
genes can be found in the Supplementary Material6.
Altogether, 22 of the 25 top-ranked genes have ei-
ther a known relation to leukemia or, based on our
validation, a potential relation to leukemia; of these,
9 are known markers, 1 is a known therapeutic tar-

get, 2 are potential markers, and 10 are potential
therapeutic targets.

For comparison, Table 2 also shows the ranks of
the above genes in a ranking based on (absolute val-
ues of) the t-statistic computed from the AML/ALL
distinction29, and in a ranking based on the similar-
ity of each gene to the 10 positive training genes,
computed as the Pearson correlation between the
expression vector of each gene and the average ex-
pression vector of the positive training genes2.g The
average rank of these 25 genes in the t-statistic rank-
ing is 3371.8, and in the Pearson ranking is 2060.8.
Conversely, the top 25 genes in the t-statistic rank-
ing have an average rank of 1634.1 in our ranking;
the top 25 genes in the Pearson ranking have an av-
erage rank of 976.7. The overall rankings are also
quite different from each other: the Kendall τ cor-

fBLAST website: http://www.ncbi.nlm.nih.gov/BLAST/ .
gFor a fair comparison, genes used for training were removed before calculating the t-statistic and Pearson ranks.



Table 3. Colon cancer results: 25 top-ranked genes. Relevance summary: � Known marker; ♦
Potential marker; � Known therapeutic target; � Potential therapeutic target; × No link found.

See Supplementary Material6 for detailed analyses of the relevance of these genes. Ranks of the genes
in rankings based on the t-statistic29 and Pearson correlation2 are shown for comparison; see text for

details.

Gene Relevance t-Statistic Pearson

Summary Rank Rank

1. 26 kDa cell surface protein TAPA-1 � 858 1292

2. Id1 � 1357 140

3. Cleavage and polyadenylation specificity factor × 290 1585
4. Interferon-inducible protein 9-27 ♦ 90 1394

5. Nonspecific crossreacting antigen � 202 1775

6. cAMP response element regulatory protein (CREB2) � 684 527
7. MHC class I HLA-Bw58 × 1867 1339

8. Translational initiation factor 2 gamma subunit × 101 1265

9. Splicing factor (CC1.4) � 463 545
10. Nucleolar protein (B23) ♦ 7 1606

11. Lactate dehydrogenase-A (LDH-A) ♦ 447 670

12. Guanine nucleotide-binding protein G(OLF) � 707 396
13. LI-cadherin ♦ 1431 72

14. Lysozyme � 128 1845
15. Prolyl 4-hydroxylase (P4HB) ♦ 358 952

16. Eukaryotic initiation factor 4AII � 1163 253

17. HLA class I histocompatibility antigen × 934 454
18. Interferon-inducible protein 1-8D � 308 1447

19. Very long chain acyl-CoA dehydrogenase × 1703 170

20. Dipeptidase � 721 1886
21. Heat shock 27 kDa protein � 645 946

22. Tyrosine-protein kinase receptor TIE-1 precursor ♦� 596 926

23. Mitochondrial import receptor MOM38 × 1928 197
24. Mitochondrial matrix protein P1 precursor � 3 1614

25. Eukaryotic initiation factor EIF-4A homolog � 386 1126

relation between the ranking learned by our method
(over all 6962 genes) and that based on the t-statistic
is 0.0361, and between our ranking and the Pearson
ranking is 0.2229. This suggests that all these ap-
proaches could be used in a complementary manner
to identify new genes.

For example, the top-ranking gene identified by
our method, KIAA0220, would not be pulled out by
either the t-statistic or the Pearson correlation. A
BLAST search revealed that the protein coded for
by this gene is homologous to PI3-kinase-related ki-
nase SMG-1. The molecular function of the encoded
protein is not yet known, but its homology to PI3-
kinase makes it an exciting pharmacological target:
the dysregulation of the PI3-kinase signaling path-
way has been implicated in multiple cancer types24,
and pharmacological agents targeting this pathway
are currently in clinical trials. This suggests that
the protein encoded by KIAA0220 could possibly

evolve as a similar target for the therapeutic man-
agement of leukemia. Indeed, we recently screened
for the expression of isoforms of this gene in a human
leukemia cell line, and real-time polymerase chain re-
action (PCR) analysis revealed an up-regulation of
the mRNA transcripts of this gene by several folds
as compared with expression in normal cells. We are
currently conducting further biological characteriza-
tions of the functions of this gene; these studies will
be reported elsewhere.

The top 25 genes in the ranking learned for colon
cancer are shown in Table 3; again, detailed analyses
for all these genes can be found in the Supplementary
Material6. In this case, 19 of the 25 top-ranked genes
have a known or potential relation to colon cancer; of
these, 3 are known markers, 6 are potential markers,
and 11 are potential therapeutic targets (one is both
a potential marker and a potential therapeutic tar-
get). Again, for comparison, we also show the ranks



of these genes in a ranking based on (absolute values
of) the t-statistic computed from the tumor/normal
distinction29, and in a ranking based on the Pear-
son correlation between the expression vector of each
gene and the average expression vector of the 10 pos-
itive training genes2. In this case, the average rank
of these 25 genes in the t-statistic ranking is 695.1,
and in the Pearson ranking is 976.9. Conversely, the
top 25 genes in the t-statistic ranking have an aver-
age rank of 848.8 in our ranking; the top 25 genes in
the Pearson ranking have an average rank of 758.6.
As before, the overall rankings are also quite differ-
ent: the Kendall τ correlation between the ranking
learned by our method (over all 1934 genes) and that
based on the t-statistic is 0.1114, and between our
ranking and the Pearson ranking is 0.1731, suggest-
ing again a complementary role for these approaches
in identifying relevant genes.

5. DISCUSSION

We have proposed a new approach for ranking genes
by relevance to a disease. Our approach makes use of
recent developments on ranking methods in machine
learning; specifically, we have shown that the gene
ranking problem is naturally formulated as a bipar-
tite ranking problem in machine learning. We have
demonstrated our approach on microarray expression
data for leukemia and colon cancer; in both cases,
our ranking method has identified several genes that
were not identified by previous methods. For exam-
ple, the KIAA0220 gene, which was ranked highest
by our method for leukemia, has shown promising
results in preliminary screening experiments in hu-
man leukemia cells. This gene is especially exciting
due to its homology to PI3-kinase, which has been
implicated in various other types of cancer and is cur-
rently being targeted for drug development. We are
currently conducting further biological characteriza-
tions of the functions of this gene.

Our approach has several advantages compared
with previous gene ranking approaches. In the con-
text of microarray data, our approach does not make
any assumptions about the nature of the biological
samples, unlike approaches that assume the samples
come from two different classes. More generally, our
approach exploits existing biological knowledge not
only in the form of positive training genes known to

be relevant to a disease, as is done by similarity-based
ranking methods, but also in the form of negative
training genes known to be irrelevant.

The overall approach of using ranking methods
in machine learning is highly flexible and can be used
in conjunction with a variety of data sources. For
vector-valued data, one can use the RankBoost al-
gorithm we have used in our experiments, or a va-
riety of other learning methods. For other types of
data, one can use the RankBoost algorithm with an
appropriate base function class Fbase, or other learn-
ing methods such as kernel-based ranking methods
with an appropriate kernel19, 20, 3. For example, for
graph or network data, such as protein-protein in-
teraction data, one can use graph ranking methods
that effectively derive a kernel from the Laplacian
matrix of the input graph3. One can also use rank-
ing methods in machine learning in conjunction with
multiple data sources: for example, by first learning
a ranking from each individual data source, and then
combining the rankings using methods such as those
of Aerts et al.2, or by combining kernels correspond-
ing to different data sources22 and directly learning
a single ranking using the combined kernel.

Our study suggests that ranking methods in ma-
chine learning could emerge as a powerful tool for
mining biological data sources for the identification
of genes relevant to a particular disease.
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