
GOstruct: PREDICTION OF GENE ONTOLOGY TERMS USING METHODS FOR
STRUCTURED OUTPUT SPACES

Artem Sokolov and Asa Ben-Hur∗

Department of Computer Science, Colorado State University
Fort Collins, CO, 80523, USA

Email: {sokolov, asa}@cs.colostate.edu

Protein function prediction is an active area of research in bioinformatics. And yet, transfer of annotation on the
basis of sequence or structural similarity remains widely used as an annotation method. Most of today’s machine

learning approaches reduce the problem to a collection of binary classification problems: whether a protein performs a

particular function, sometimes with a post-processing step to combine the binary outputs. We propose a method that
directly predicts a full functional annotation of a protein by modeling the structure of the Gene Ontology hierarchy in

the framework of kernel methods for structured-output spaces. Our empirical results show improved performance over

a BLAST nearest-neighbor method, and over algorithms that employ a collection of binary classifiers as measured on
the Mousefunc benchmark dataset.

1. INTRODUCTION

Biologists have come to rely on annotations of pro-
tein function during their work. Since determining
the function of a protein experimentally is an ex-
pensive and laborious process, a large fraction of
the annotations in current databases are predicted
computationally26. Transfer of annotation on the
basis of sequence or structural similarity has proven
to be an effective way of annotating proteins, and
remains the standard way of assigning function to
proteins in newly sequenced organisms18. In recent
years more sophisticated machine learning methods
are being applied to this problem22, 8, 3, 11, 20, 17.

The Gene Ontology (GO), which is the current
standard for annotating gene products and proteins,
provides a large set of terms arranged in a hierar-
chical fashion that specify a gene-product’s molec-
ular function, the biological process it is involved
in, and its localization to a cellular component10

Until recently, computational methods for annotat-
ing protein function have predominantly followed the
“transfer-of-annotation” paradigm where GO key-
words are transferred from one protein to another
based on sequence similarity18. This is generally
done by employing a sequence alignment tool such
as BLAST1 to find annotated proteins that have a
high level of sequence similarity to an un-annotated
query protein. There has also been an effort to rec-

ognize “good” BLAST hits, from which annotations
can then be transferred34. Transfer of annotation
methods have several shortcomings: transfer of mul-
tiple GO keywords between proteins is not always ap-
propriate, e.g. in the case of multi-domain proteins9,
and they fail to exploit the underlying hierarchical
structure of the annotation space.

Prediction of protein function has been ap-
proached as a binary classification problem using a
wide array of methods that predict whether a query
protein has a certain function8, 16, 32, 21. These
methods leave it to the user to combine the out-
put of classifiers trained to recognize the different
possible functions and decide which of the annota-
tions to accept. To automate the task, several pre-
dictors employ Bayesian networks or logistic regres-
sion to infer the most likely set of annotations in
a top-down fashion3, 11, 17, 20. All these approaches
require training hundreds or even thousands of clas-
sifiers, depending on the level of specificity of the
predicted annotations.

The Hughes Lab from the University of Toronto
recently hosted a competition aimed at the predic-
tion of protein function in the M. musculus species22.
The task was to infer functional annotations using
several sources of data: gene expression, protein-
protein interactions, protein domain composition,
phenotype data and phylogenetic profiles. The com-

∗Corresponding author.

petition provided a common framework for empir-
ical comparison of the predictors employed by the
participants, and the test data and the predic-
tions submitted by the contestants have been con-
sequently released as part of the Mousefunc bench-
mark dataset22. Nearly all of the participants em-
ployed a collection of binary classifiers, each trained
to predict a particular GO category. Some of the
participants further post-processed the results of the
binary classification using approaches which included
logistic regression20, 17 and Bayesian networks11. We
also note the work by Chen, et al., where the al-
gorithm treated functional annotations in their en-
tirety by flattening their hierarchical representation
to an indexing system, encoding the relationship be-
tween proteins as a graph, and then using the Boltz-
mann machine and simulated annealing to infer new
annotations6.

In this paper we take a different approach:
rather than use a collection of binary classifiers, we
construct a single classifier that learns to predict a
set of GO terms, instead of independently predict-
ing individual ones. Since GO terms form a hier-
archy, and a protein can be associated with several
GO terms, GO term prediction can be formulated
as a hierarchical multi-label classification problem.
We choose to model this problem using structured-
output classification methods, a novel methodology
in machine learning that is appropriate for model-
ing classification tasks where the output belongs to
some discrete structure2, 30, 31. Structured output
methods represent a learning problem using a joint
representation of the input output space, and at-
tempt to learn a compatibility function f(x,y) that
quantifies how related is an input x (protein in our
case) with an element y of the output space (set
of GO terms). Several classification methods have
been generalized to this framework, including Sup-
port Vector Machines (SVMs)31. Furthermore, we
choose to use kernel methods for structured output
methods. Whereas kernel methods use a mapping
of inputs to a feature space that is represented by a
kernel function4, in the structured output setting the
kernel becomes a joint function of both inputs and
outputs31. Structured-output methods have been
applied to a variety of problems, including applica-
tions in natural language processing31, 27 and pre-

diction of disulfide connectivity29. The empirical re-
sults in the literature demonstrate that incorporat-
ing the structure of the output space into learning
often leads to better performance over local learning
via binary classifiers, when the binary tasks are not
independent25, 5.

In this work we report results on our experi-
ments using several flavors of kernel methods for
structured output spaces, in a methodology we
call GOstruct. More specifically, we focus on the
structured-perceptron7 and the structured SVM31.
Our results demonstrate that learning the structure
of the output space yields improved performance over
transfer of annotation when both are given the same
input-space information (BLAST hits). Addition-
ally, we obtain improved performance on the Mouse-
func dataset22 when compared to published results.

2. METHODS

Nucleic acid binding

DNA binding

(0, 0, 1, 1, 1, 0, 1, 1)

Fig. 1. A schematic representation of the hierarchical
label space for GO term annotation. Given that a pro-
tein is associated with a particular node in the GO hier-
archy (e.g. DNA binding), it is also associated with all
its ancestors in the hierarchy (including the direct par-
ent of DNA binding which is Nucleic acid binding). The
collection of GO nodes associated with a protein (shaded
in the figure) is represented by a vector of labels where
nonzero entries correspond to the GO nodes associated
with the protein.

The Gene Ontology provides annotation terms that
are arranged hierarchically in three namespaces that
describe different aspects of a protein’s function:
molecular function, biological process, and cellular
component. Terms that appear deeper in the hierar-
chy provide more detailed information (see Figure 1
for illustration). Note that associating a protein with
a particular term automatically implies the associa-

tion with all the terms that generalize it, i.e. all its
ancestors in the hierarchy. In the example in Fig-
ure 1, a DNA binder is also a nucleic acid binder.

In view of the above discussion, we formulate
prediction of GO terms as follows. Each protein is
associated with a macro-label y = (y1, y2, ..., yk) ∈
{0, 1}k, where each micro-label yi corresponds to one
of the k nodes in one of the three GO namespaces.
The micro-labels take on the value of 1 when the
protein performs the function defined by the corre-
sponding node. We refer to such nodes as positive.
Whenever a protein is associated with a particular
micro-label, we also associate it with all its ances-
tors in the hierarchy, i.e. given a specific term, we
associate with it all terms that generalize it. This en-
forces the constraint that parents of positive nodes
are also positive. Throughout this paper we will re-
fer to macro-labels as labels or outputs. Our focus
in this work will be on predicting GO terms for each
namespace separately.

2.1. Measuring performance

Classifier performance is often measured using the er-
ror rate which reports the fraction of examples clas-
sified incorrectly. In the case of binary classification
this can be expressed as an average of the indicator
function ∆0/1(y, ŷ) that returns a value of 1 if the la-
bels y and ŷ do not match and a value of 0 otherwise.
∆0/1(y, ŷ) is known as the 0-1 loss. In the context of
hierarchical classification, the 0-1 loss is not appro-
priate as it makes no distinction between slight and
gross misclassifications. For instance, a label where
the protein function is mis-annotated with its parent
or sibling is a better prediction than an annotation
in an entirely different part of the hierarchy. Yet,
both will be assigned the same loss since they don’t
match the true label.

A number of loss functions that incorporate tax-
onomical information have been proposed in the con-
text of hierarchical classification12, 27, 15. These ei-
ther measure the distance between labels by finding
their least common ancestor in the taxonomy tree12

or penalize the first inconsistency between the la-
bels in a top-down traversal of the taxonomy27. Kir-
itchenko et al. proposed a loss function that is re-
lated to the F1 measure which is used in informa-
tion retrieval33 and was used by Tsochantaridis et

al. in the context of parse tree inference31. In what
follows we present the F1 loss function and show
how it can be expressed in terms of kernel functions,
thereby generalizing it to arbitrary output spaces.
The F1 measure is a combination of precision and
recall, which for two-class classification problems are
defined as

F1 =
2 · P ·R
P +R

, P =
tp

tp + fn
, R =

tp
tp + fp

,

where tp is the number of true positives, fn is the
number of false negatives and fp is the number of
false positives. Rather than expressing precision and
recall over the whole set of examples, we express
it relative to a single example (known as micro-
averaging in information retrieval), computing the
precision and recall with respect to the set of micro-
labels. Given a vector of true labels (y) and pre-
dicted labels (ŷ) the number of true positives is the
number of micro-labels common to both labels which
is given by yT ŷ. It is easy to verify that

P (y, ŷ) =
yT ŷ
ŷT ŷ

, R(y, ŷ) =
yT ŷ
yTy

. (1)

We can now express F1(y, ŷ) as

F1(y, ŷ) =
yT ŷ

yTy + ŷT ŷ
,

and define the F1-loss as ∆F1(y, ŷ) = (1 −
F1(y, ŷ))31. We propose to generalize this loss to
arbitrary output spaces by making use of kernels.
Replacing dot products with kernels we obtain

P (y, ŷ) =
K(y, ŷ)
K(ŷ, ŷ)

R(y, ŷ) =
K(y, ŷ)
K(y,y)

.

If we use a linear kernel, these definitions yield val-
ues identical to those in Equation (1). Expressing
precision and recall using kernels leads to the follow-
ing generalization of the F1-loss, which we call the
kernel loss:

∆ker(y, ŷ) = 1− F1(y, ŷ) = 1− 2K(y, ŷ)
K(y,y) +K(ŷ, ŷ)

.

(2)
We used the kernel loss to measure accuracy in our
experiments.

2.2. GOstruct: GO term prediction as a
structured outputs problem

In this section we present the GOstruct method and
kernel methods for structured output spaces. But
first, we provide a brief overview of binary (two-class)
classification using kernel methods. A standard ap-
proach in training predictors for binary classification
problems is to learn a discriminant function f(x) and
classify the input x according to the sign of f(x).
Since linear methods usually have efficient training
algorithms, it is common to assume that the discrim-
inant function is linear. A way to obtain a non-linear
classifier, using an algorithm designed for linear dis-
crimination is to assume that the data is mapped
non-linearly into some feature-space using a function
φ(x). A linear discriminant in this feature space will
have the form f(x) = wTφ(x), where w is a vec-
tor of parameters. Whenever w can be expressed
as a weighted sum over the images of the input ex-
amples, i.e. w =

∑
i αiφ(xi) the discriminant func-

tion becomes f(x) =
∑
i αiφ(xi)Tφ(x), which can

expressed using the kernel function as
∑
αiK(xi,x).

See a tutorial by Ben-Hur, et. al4 for more details
and pointers on kernel methods.

A binary classifier can predict whether a pro-
tein performs a certain function. For predicting what
function the protein performs, i.e. the full macro-
label (y1, y2, ..., yk), we turn to structured output
learning. In this setting the discriminant function
becomes a function f(x,y) of both inputs and labels,
and can be thought of as measuring the compatibil-
ity of the input x with the output y. We denote by
X the space used to represent our inputs (proteins)
and by Y the set of labels we are willing to consider,
which is a subset of {0, 1}k for hierarchical multi-
label classification. Given an input x in the input
feature space X , structured-output methods infer a
label according to:

ŷ = arg max
y∈Y

f(x,y|w), (3)

where the function f : X × Y → R is parametrized
by the vector w. This classification rule chooses
the label y that is most compatible with an in-
put x. We assume the function is linear in w, i.e.
f(x,y|w) = wTφ(x,y) in some space defined by the
mapping φ. Whereas in two-class classification prob-
lems the mapping φ depends only on the input, in

the structured-output setting it is a joint function of
inputs and outputs.

x , y

wTx , y =const

x i , y i

xi , y≠ yi

Margin

More
compatible

Less
compatible

Fig. 2. The geometric view of structured-output classi-
fication. The figure represents data points (x,y) in the
joint space of inputs and outputs. We consider a given
input xi and plot it in combination with different labels
y. This figure represents the ideal case: The correct label
has the highest compatibility value and the second best
candidate is separated by a margin. Our classifier defines
a linear discriminant function over the joint input-output
space defined by φ(x,y) (the line wTφ(x,y) = const in
the figure).

To make use of kernels, we assume that the
weight vector w can be expressed as a linear com-
bination of the training examples:

w =
n∑
j=1

∑
y′∈Y

αj,y′φ(xj ,y′),

where αj,y′ is a vector of parameters indexed by j

(possible input examples) and labels y′. This leads
to reparameterization of the compatibility function
in terms of the coefficients α:

f(x,y|α) =
n∑
j=1

∑
y′∈Y

αj,y′K((xj ,y′), (x,y)),

where K : (X ×Y)× (X ×Y)→ R is the joint kernel
defined over the input-output space. For the pre-
diction of GO terms we use a joint kernel which is
a product of the input space and the output space
kernels:

K((x,y), (x′,y′)) = KX (x,x′)KY(y,y′). (4)

Our intuition for using a product kernel is that
two examples are similar in the input-output fea-
ture space if they are similar in both their input

and the output space representations. (In our ex-
periments, we have also considered a second-degree
polynomial kernel of the form K((x,y), (x′,y′)) =
(KX (x,x′) +KY(y,y′))2, which provided lower ac-
curacy.) For the output-space kernel, KY , we use
a linear kernel in all of our experiments; the input-
space kernel is described separately for each experi-
ment.

2.2.1. Inference

The arg max in Equation (3) must be computed over
the space of all possible labels Y. In the context of
protein function prediction, this is all possible com-
binations of functions defined by a few thousand GO
terms. Explicitly enumerating all of them is not
practical due to their exponential number. Fortu-
nately, a protein has only a limited number of func-
tions. Incorporating such a limit reduces the number
to be polynomial in the number of GO terms. We
further reduce this number in several ways.

During training we limited this space to only
those labels that appear in the training dataset. We
call this space Y1 and argue that it makes sense to fo-
cus on learning only combinations of GO terms that
occur in the training data (GO terms that tend to
co-occur).

In the case where we have homology informa-
tion from BLAST hits we consider two additional
output spaces for inference of test example labels,
Y2 and Y3, in order to examine the effect of the size
of the search space on prediction accuracy. We de-
fine Y3(x) to be the set of macro-labels that appear
in the significant BLAST hits of protein x (e-values
below 10−6). The output space Y2(x) is obtained
by taking all the leaf nodes represented in Y3(x)
and considering all macro-labels consisting of three
leaf nodes at the most. These label spaces satisfy:
Y3(x) ⊆ Y2(x) ⊆ Y1.

2.3. GOstruct using the perceptron
algorithm

The perceptron algorithm is one of the sim-
plest classification methods, and its extension
to the structured-outputs setting maintains this
simplicity7. We introduce a variant of the algorithm
that incorporates the concept of a margin, and pro-

pose to incorporate the loss function during its train-
ing. Given a set of n training examples {(xi,yi)}ni=1,
the margin-based perceptron algorithm attempts to
find a vector w such that for each input example the
true label has the largest compatibility value and the
best runner-up label is separated by a user-defined
margin γ:

wTφ(xi,yi)− max
y∈Y\yi

wTφ(xi,y) ≥ γ ∀i. (5)

The geometric intuition is shown in Figure 2.
We propose a variant of the perceptron method

that incorporates the loss function in the pro-
cess of training and present it as Algorithm 2.1.
The GOstruct method that uses it is referred
to as GOstructp∆, whereas the GOstruct method
that uses the standard perceptron update is called
GOstructp. In the standard version of the percep-
tron method whenever an example is misclassified or
its margin is not sufficiently large, the element of the
parameter vector α corresponding to the misclassifi-
cation is decremented by 1 regardless of whether the
classifier made a big mistake or a slight one7, 25. In-
tuitively, we would like to penalize gross misclassifi-
cations with larger values than slight errors. We pro-
pose to update the α coefficients using the amount
of dissimilarity between the true and predicted la-
bels. This can be done by utilizing ∆ker(yi, ȳ), the
loss between the true label yi and the highest scoring
candidate ȳ that differs from it. Note that the loss
value is between 0 and 1. Thus, when there is no
similarity between the predicted and the true labels,
the corresponding α coefficient will be updated by
-1, as per the traditional rule. Less penalty will be
assigned for predicting labels that are more similar
to the true label. In our application, the termina-
tion criterion is taken to be a limit on the number of
iterations.

2.4. The Structured Support Vector
Machine

The perceptron algorithm attempts to separate the
true labels from the second best candidates by a
fixed user-defined margin. Intuitively, the larger the
margin, the more robust the decision boundary is
to noise. The structured support vector machine
attempts to maximize the margin, while enforcing

Algorithm 2.1 Structured Outputs Perceptron: GOstructp∆
Input: training data {(xi,yi)}ni=1

Output: parameters αi,y for i = 1, ..., n and y ∈ Y.
Initialize: αi,y = 0 ∀i,y. //only non-zero values of α are stored explicitly
repeat

for i = 1 to n do
//Compute the top scoring label that differs from yi:
ȳ← arg maxy∈Y\yi

f(xi,y|α)
//Compute the margin:
δ ← f(xi,yi)− f(xi, ȳ)
if δ < γ then
αi,yi

← αi,yi
+ 1

αi,ȳ ← αi,ȳ −∆ker(yi, ȳ)
end if

end for
until a termination criterion is met

the constraints of Equation (5). This can be alter-
natively formulated as minimizing the norm of the
weight vector w, while keeping the margin fixed31:

min
1
2
wTw

s.t. wTφ(xi,yi)− max
y∈Y\yi

wTφ(xi,y) ≥ 1 ∀i.

Unfortunately, this generally results in over-
constrained problems with no solutions. To get
around this, we employ the n-slack formulation of
the problem31, where we allow for some amount of
margin violation. The amount of violation is repre-
sented by the slack variables ξi, which we add to the
minimization criterion:

min
w,ξ≥0

1
2
wTw +

C

n

n∑
i=1

ξi (6)

s.t. ∀i, wT δψi(ȳi) ≥ 1− ξi
∆(yi, ȳi)

,

where δψi(y) = ψ(xi,yi) − ψ(xi,y) and ȳi is the
highest scoring candidate that differs from yi as be-
fore. As is the case for any other SVM, C controls
the trade-off between the smoothness of the predic-
tor and the amount of margin violation. In this
formulation, called slack rescaling, the slack vari-
ables are scaled by the loss function, effectively re-
laxing the constraints for closely related outputs.
The corresponding GOstruct method is referred to
as GOstructnsvm. In our experiments we have also
considered the margin rescaling formulation31, which

achieved results comparable to those that employed
slack rescaling.

We have also implemented the 1-slack cutting-
plane formulation of the problem with both margin
and slack re-scaling. This formulation is the latest
development in structured SVMs13 and has the ad-
vantage over the original n-slack formulation in that
the number of constraints—and, thus, the number
of the associated dual parameters—does not depend
on the size of the dataset, because there is no longer
a slack variable associated with each data example.
The cutting-plane formulation directly enforces the
observation that the average margin violation will
not exceed the average slack13. The results are re-
ported for slack re-scaling only (a formulation we re-
fer to as GOstruct1svm) with the margin re-scaling
formulation yielding comparable performance.

To train a structured SVMs, we used the work-
ing set approach31 with an SMO-like algorithm23 as
the underlying optimizer. Like the perceptron al-
gorithm, all structured SVMs formulations were ex-
pressed in terms of the dual coefficients α instead
of a vector w. We refer the reader to the original
papers31, 13 for details.

3. DATA PREPARATION AND
EXPERIMENTAL SETUP

We performed two experiments: one to compare
the structured-output methods to homology-based
transfer-of-annotation, and another to compare its

performance on the Mousefunc dataset.

3.1. Four species
prediction-by-sequence-similarity
experiment

To compare the structured-output algorithms to
the transfer-of-annotation method, we computed se-
quence similarity using BLAST for the following
four species: C. elegans, D. melanogaster, S. cere-
visiae, and S. pombe. Sequence data was obtained
from the genome database of each organism (http:
//www.wormbase.org/,
http://flybase.bio.indiana.edu/, http://www.
yeastgenome.org/) and annotations were obtained
from the Gene Ontology website at http://www.

geneontology.org. Our experiments follow the
leave-one-species-out paradigm34, where we with-
hold one species for testing and train the GOstruct
method on the remaining data, rotating the with-
held species. This variant of cross-validation simu-
lates the situation of annotating a newly-sequenced
genome. In developing our methods we used the GO-
slims ontology; we report results on the full GO on-
tology, thereby avoiding overfitting our test data. In
our analysis we considered all GO molecular func-
tion terms that appear as annotations in at least 10
proteins, resulting in a total of 361 nodes.

To prepare the data we removed all annotations
that were discovered through computational means
as these are generally inferred from sequence or struc-
ture similarity and would introduce bias into any
classifier that used sequence similarity to make a
prediction26. This was done by removing all an-
notations with the evidence codes: IEA, ISS, ND,
RCA, and NR. Note that limiting the experiments
to annotations that were possibly derived by compu-
tational means limits the number of species that can
be considered to a very small set of model organisms,
and for simplicity we focused on the eukaryotes listed
above.

We then ran BLAST for each of the proteins
in our dataset against all four species, removing the
hits where the protein was aligned to itself. We em-
ployed the nearest-neighbor BLAST methodology as
our baseline. For every test protein, we transferred
the annotations from the most significant BLAST
hit against a protein from another species. Proteins

which didn’t have a hit with an e-value below 10−6

were not considered in our experiments.
The structured-output methods are provided ex-

actly the same data as the BLAST method: each
protein was represented by its BLAST scores against
the database proteins; this is known as the empirical
kernel map28; more specifically, each feature was the
negative-log of the BLAST e-values that are below
50, where the features were normalized to have values
less than 1.0. An empirical kernel map arises from
the intuition that two similar proteins will have simi-
lar patterns of similarity to proteins in the database,
i.e. their vectors of e-values will be similar.

We ran five fold cross-validation on the training
data to select a suitable value of the margin param-
eters γ (for perceptron) and C (for structured SVM)
for each left-out species. In our experiments, we no-
ticed that finding the right value of γ for the percep-
tron algorithm was not as essential as using the loss
update proposed in the previous section.

3.2. Mousefunc experiment

As a further comparison of the GOstruct method we
ran it on the Mousefunc dataset, using exactly the
same data that was provided to the participants22.
In particular, we used two different sources of gene
expression data, protein-protein interaction adja-
cency matrix, protein pattern annotation data from
Pfam and InterPro, and phylogenetic profiles. We
normalized the gene expression data by subtracting
the mean and dividing by the standard deviation of
each feature. Additionally, we treated missing entries
in any source of data as zero. The features within
each source of data were normalized to unit vectors
to normalize the contribution of each data source to
the overall input space kernel, KX , which was com-
puted as the sum of linear kernels over the individual
datasets. As before, the joint kernel is computed as a
product of a linear output space kernel KY and KX
(c.f. Equation 4).

We trained the GOstruct methods to predict an-
notations for the subset of GO terms requested by
the competition organizers. Any training or test ex-
amples that had no annotations in this subset were
removed from the analysis. Analysis of molecular
function, biological process and cellular component
namespaces were performed separately from each

Table 1. Classification results on predicting GO molecular function terms (361
terms that have more than 10 annotations). We compare BLAST-NN with two
variants of the perceptron (GOstructp and GOstructp∆) and two SVM variants
(GOstructsvmm and GOstructsvm) across three methods for limiting the output
space. Reported is mean kernel loss per protein for each algorithm. The number
of proteins used in each organism is displayed in the second row. For comparison,
we also include the performance of a random classifier that transfers annotation
from a training example chosen uniformly at random. The standard deviations
of these results are in the range 0.003-0.01; see text for details.

Test on C. elegans D. melanogaster S. cerevisiae S. pombe Output

proteins 844 1804 1853 898 Space

BLAST-NN 0.628 0.450 0.381 0.360

GOstructp 0.634 0.446 0.414 0.426 Y1

GOstructp 0.627 0.438 0.391 0.381 Y2

GOstructp 0.628 0.436 0.388 0.371 Y3

GOstructp∆ 0.589 0.378 0.389 0.372 Y1

GOstructp∆ 0.605 0.368 0.358 0.341 Y2

GOstructp∆ 0.623 0.415 0.368 0.339 Y3

GOstruct1svm 0.628 0.420 0.390 0.368 Y1

GOstruct1svm 0.634 0.416 0.366 0.341 Y2

GOstruct1svm 0.640 0.419 0.366 0.347 Y3

GOstructnsvm 0.625 0.433 0.382 0.366 Y1

GOstructnsvm 0.634 0.425 0.364 0.338 Y2

GOstructnsvm 0.637 0.424 0.365 0.345 Y3

Random 0.821 0.868 0.877 0.816

other.
The values of γ and C were again chosen by per-

forming cross-validation on the training data. We
noticed that the algorithms were quite sensitive to
the choice of their parameters on this dataset.

4. RESULTS

4.1. Four species experiment

The results for the leave-one-species-out experi-
ments are presented in Table 1. The results show
that the various flavors of the GOstruct method
outperform the BLAST nearest-neighbor classifier
(BLAST-NN), except for the standard implemen-
tation of the perceptron method (GOstructp). Be-
fore looking at the differences between the GOstruct
methods, we note that all the classifiers performed
poorly on C. elegans. This is due to the fact that
a vast majority of proteins in this species are anno-
tated as protein binders (GOID:0005515). Such an-
notations contain little information from a biological
standpoint and result in a skewed set of labels.

Our first observation is that the GOstructp∆
method, which uses the loss function in the update
rule of the perceptron, outperformed GOstructp.
Furthermore, excluding C. elegans, restricting infer-
ence to the sets Y2 or Y3 resulted in better perfor-

mance than using the set Y1 for all the flavors of
the GOstruct method. The larger label-space Y1,
results in the inference procedure considering many
annotations that are irrelevant to the actual func-
tion of the protein, which can reduce prediction ac-
curacy. When used in conjunction with Y2 or Y3 our
structured-outputs methods can be thought of as pri-
oritizing the annotations suggested by BLAST in a
way that uses the structure of the Gene Ontology
hierarchy.

The two SVM formulations performed equally
well, with the 1-slack formulation performing
slightly better on D. Melanogaster. Both meth-
ods outperform BLAST-NN and GOstructp, but not
GOstructp∆, which is a significantly simpler algo-
rithm. While only the slack re-scaling results are re-
ported, similar performance was achieved with mar-
gin re-scaling.

We assessed the robustness and variability of the
results by randomly sampling the data for training
and testing: 20% of the training data was chosen
at random and withheld from training. The classi-
fier was then trained on the remaining 80% of the
training data and tested as before. This provided
us with a standard deviation measure that indicated
how consistent the classifiers were at obtaining the
performance presented in Table 1. We computed the

standard deviations across 30 trials for every classi-
fier. The values for BLAST-NN and the random clas-
sifier were 0.004 and 0.009, respectively. GOstructp
had standard deviation values in the range (0.006,
0.01) for the different output spaces; GOstructp∆
yielded more consistent performance with the stan-
dard deviation values in the range (0.003, 0.007).

In summary, the results in Table 1 support our
hypothesis that learning the structure of the output
space is superior to performing transfer of annota-
tion.

4.2. Mousefunc experiment

The results on the Mousefunc dataset are presented
in Table 3; the number of test examples and num-
ber of GO terms are given in Table 2. We ap-
plied GOstructp∆ and the two versions of structured
SVMs for prediction of GO terms in each of the three
namespaces and compared our results to the predic-
tions submitted by the participants in the Mousefunc
challenge. First we consider classifier error as mea-
sured by the average loss per sample. Under this
measure the n-slack formulation of the structured
SVM consistently outperforms all other algorithms.
Three of the top performing algorithms (Alg2, Alg3,
and GOstruct) used kernel methods, integrating re-
sults across the hierarchies in different ways. In ad-
dition to the comparison with the Mousefunc chal-
lenge results we compare the GOstruct method with
the naive SVM approach of training separate binary
classifiers for each node in the GO hierarchy. This
experiment was performed using the SVM implemen-
tation in the PyML machine learning library avail-
able at pyml.sf.net run with the default parame-
ters, and the same input-space kernel used to assess
the GOstruct methods. The SVM-based GOstruct
method outperforms the collection of binary SVMs
when performance is measured by the kernel loss.
These results are not surprising: the GOstruct meth-
ods is trained to optimize the kernel loss, whereas the
other methods optimize other criteria.

We also report the average area under the ROC
curve (AUROC) for all experiments24. For GOstruct
algorithms, the confidence measure used in AUROC
computations was taken to be the difference in the
compatibility function values between the predicted
label and a label that had the corresponding node

prediction flipped. The values are reported in the
bottom half of Table 3. The geneMANIA method
yielded the best AUROC, which is consistent with
the literature report22. It is also the algorithm that
yields the worst average loss per sample. This sug-
gests that training a classifier to predict individual
node annotations (as measured by the AUROC) does
not solve the more general problem of predicting the
full annotation (as measured by the kernel loss). The
claim is further strengthened by the similar trend
observed in GOstructnsvm versus the binary-SVM
single-node approach. The structured-output algo-
rithm yields better loss values but worse AUROC.
We were surprised to find, however, that the naive
two-class SVM performed comparably or better than
all the Mousefunc methods employing a probabilis-
tic algorithms to combine the single-node predictions
(as done in Alg 2, Alg 3, and Alg 6).

Table 2. Statistics of the Mousefunc dataset.

GO namespace number of terms test example

MF 205 531

BP 513 626
CC 119 307

The GOstructp∆ algorithm is significantly sim-
pler than the majority of the algorithms employed
by the participants in the Mousefunc challenge. It
is very easy to describe and implement. In our ex-
perience, the perceptron converged in as few as five
passes through the training data. On a modern ma-
chine, this took roughly three hours with pre-cached
kernel matrices. While being significantly simpler
than all other algorithms, the structured percep-
tron maintained competitive performance with all
the other entries and consistently outperformed two
of the submitted algorithms.

We note that all of the algorithms performed
best when tasked with the prediction of molecular
function, followed by cellular component, with worst
performance on prediction of the biological names-
pace terms. Biological process is the namespace
that had the largest number of terms, which ex-
plains in part the worst performance in predicting
it—the classifier has more ways of making a wrong
prediction. In experiments published elsewhere in
predicting individual GO terms from sequence using
a BLAST-NN approach, performance in the cellu-

Table 3. Prediction results on the Mousefunc dataset for molecular function (MF), biological process (BP) and cellular compo-

nent (CC) namespaces. Reported are the the mean kernel loss per protein (top), and the average area under the ROC (AUROC)
curve per node (bottom) for each algorithm. Lower values of the loss and higher values of the AUROC are better. The best

value for each experiment is highlighted. Alg 1 denotes the work by Kim, et al.14. Alg 2 is an ensemble of calibrated SVMs

by Obozinski, et. al20. Alg 3 is the kernel logistic regression, submitted by Lee, et al.17. Alg 4 is geneMANIA19. Alg 5 is
GeneFAS6. Alg 6 is the work by Guan, et al.11. GOstructp∆ uses the perceptron algorithm (Algorithm 2.1), and GOstruct1svm

and GOstructnsvm denote the 1-slack and n-slack formulation of the structured SVMs with slack re-scaling. The last column

presents the results of running binary SVMs on each node individually. The variability in our results was computed as in the
previous experiment and yielded a standard deviation of 0.008 for the perceptron, and 0.02 for the SVMs.

Performance GO Literature GOstruct SVM

measure namespace Alg 1 Alg 2 Alg 3 Alg 4 Alg 5 Alg 6 p∆ 1svm nsvm (single node)

kernel loss MF 0.633 0.470 0.431 0.668 0.522 0.618 0.526 0.652 0.362 0.417
BP 0.788 0.687 0.628 0.839 0.735 0.717 0.680 0.797 0.594 0.671

CC 0.599 0.602 0.534 0.755 0.666 0.664 0.617 0.670 0.490 0.587

AUROC MF 0.861 0.872 0.888 0.916 0.859 0.904 0.803 0.747 0.880 0.915

BP 0.761 0.737 0.770 0.834 0.755 0.839 0.705 0.628 0.730 0.787
CC 0.790 0.767 0.778 0.842 0.750 0.834 0.754 0.701 0.807 0.815

lar component and biological process namespace was
very similar, and as we observe here, performance
was much better for predicting molecular function26.

We were surprised by the relatively poor per-
formance of the 1-slack SVM. The version that em-
ploys slack re-scaling managed to stay on par with
the lower end of the submitted algorithms, while the
margin re-scaling version (results not shown), was
outperformed by every other algorithm. The 1-slack
SVM has a single α coefficient associated with a col-
lection of inputs/labels, as opposed to the n-slack
formulation which has a coefficient associated with
individual inputs/label pairs. We believe this added
flexibility in the n-slack formulation was the factor
that helped its performance.

5. CONCLUSIONS

In this paper we presented the GOstruct method
for predicting GO terms by explicitly modeling the
structure of the GO hierarchy using kernel methods
for structured output spaces, a novel development
in the field of machine learning. A very simple ver-
sion of the GOstruct method which uses the per-
ceptron algorithm performs better than a transfer-
of-annotation method when provided the same in-
formation. Additionally, we demonstrated improved
performance on the Mousefunc benchmark using a
more elaborate version of the GOstruct method that
employed structured SVMs. The perceptron-based
version also yielded competitive performance to some
of the more elaborate methods submitted by the par-
ticipants.

A well-known issue in the structured-output ap-
proach is the need to consider a potentially expo-
nential number of outputs during inference. We pro-
posed several ways for limiting the size of the search
space, and found that this not only leads to efficient
inference and training, but also improves classifier
accuracy. We also proposed a generalization of the
F1 loss function31 to arbitrary output spaces through
the use of kernels, and a variant of the perceptron
update rule that leverages the loss function to assess
the necessary amount of update. We demonstrate
empirically that the modified rule leads to improved
accuracy.

In future work we plan to extend the GOstruct
framework in several ways: integrate unlabeled
data through semi-supervised learning, consider ad-
ditional methods for performing inference within a
GO namespace, and across namespaces, and explore
ways of probing the classifier to determine features
that are responsible for the way a protein was clas-
sified.

References

1. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and
D.J. Lipman. Basic local alignment search tool. J.
Mol. Biol, 215(3):403–410, 1990.

2. Y. Altun, I. Tsochantaridis, and T. Hofmann. Hid-
den markov support vector machines. Proc. ICML,
6, 2003.

3. Z. Barutcuoglu, R.E. Schapire, and O.G. Troyan-
skaya. Hierarchical multi-label prediction of gene
function. Bioinformatics, 22(7):830–836, 2006.

4. A. Ben-Hur, C.S. Ong, S. Sonnenburg, B. Schölkopf,
and G. Rätsch. Support Vector Machines and Ker-

nels for Computational Biology. PLoS Computa-
tional Biology, 4(10), 2008.

5. N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. In-
cremental algorithms for hierarchical classification.
The Journal of Machine Learning Research, 7:31–54,
2006.

6. Y. Chen and D. Xu. Global protein function anno-
tation through mining genome-scale data in yeast
Saccharomyces cerevisiae . Nucleic acids research,
32(21):6414, 2004.

7. M. Collins. Discriminative training methods for hid-
den Markov models: theory and experiments with
perceptron algorithms. Proceedings of the ACL-02
conference on Empirical methods in natural language
processing-Volume 10, pages 1–8, 2002.

8. M. Deng, T. Chen, and F. Sun. An integrated prob-
abilistic model for functional prediction of proteins.
In RECOMB, pages 95–103, 2003.

9. Michael Y. Galperin and Eugene V. Koonin. Sources
of systematic error in functional annotation of
genomes: Domain rearrangement, non-orthologous
gene displacement and operon disruption. In Silico
Biology, 1(1):55–67, 1998.

10. Gene Ontology Consortium. Gene ontology: tool for
the unification of biology. Nat. Genet., 25(1):25–9,
2000.

11. Y. Guan, C. Myers, D. Hess, Z. Barutcuoglu,
A. Caudy, and O. Troyanskaya. Predicting gene func-
tion in a hierarchical context with an ensemble of
classifiers. Genome Biology, 9(Suppl 1):S3, 2008.

12. T. Hofmann, L. Cai, and M. Ciaramita. Learning
with taxonomies: Classifying documents and words.
NIPS Workshop on Syntax, Semantics, and Statis-
tics, 2003.

13. T. Joachims, T. Finley, and Chun-Nam Yu. Cutting-
plane training of structural svms. Machine Learning,
to appear.

14. W. Kim, C. Krumpelman, and E. Marcotte. Infer-
ring mouse gene functions from genomic-scale data
using a combined functional network/classification
strategy. Genome Biology, 9(Suppl 1):S5, 2008.

15. Svetlana Kiritchenko, Stan Matwin, and A. Fazel
Famili. Functional annotation of genes using hierar-
chical text categorization. In Proc. of the BioLINK
SIG: Linking Literature, Information and Knowl-
edge for Biology, a joint meeting of the ISMB Bi-
oLINK Special Interest Group on Text Data Mining
and the ACL Workshop on Linking Biological Liter-
ature, Ontologies and Databases, 2005.

16. G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I.
Jordan, and W. S. Noble. A statistical framework for
genomic data fusion. Bioinformatics, 20(16):2626–
2635, 2004.

17. H. Lee, Z. Tu, M. Deng, F. Sun, and T. Chen. Diffu-
sion kernel-based logistic regression models for pro-
tein function prediction. OMICS: A Journal of Inte-
grative Biology, 10(1):40–55, 2006.

18. Y. Loewenstein, D. Raimondo, O. Redfern, J. Wat-

son, D. Frishman, M. Linial, C. Orengo, J. Thorn-
ton, and A. Tramontano. Protein function annota-
tion by homology-based inference. Genome Biology,
10(2):207, 2009.

19. S. Mostafavi, D. Ray, D. Warde-Farley, C. Grouios,
and Q. Morris. GeneMANIA: a real-time multiple as-
sociation network integration algorithm for predict-
ing gene function. Genome Biology, 9(Suppl 1):S4,
2008.

20. G. Obozinski, G. Lanckriet, C. Grant, M. Jor-
dan, and W. Noble. Consistent probabilistic out-
puts for protein function prediction. Genome Biol-
ogy, 9(Suppl 1):S6, 2008.

21. D. Pal and D. Eisenberg. Inference of protein func-
tion from protein structure. Structure, 13:121–130,
January 2005.

22. L. Peña-Castillo, M. Tasan, C. Myers, H. Lee,
T. Joshi, C. Zhang, Y. Guan, M. Leone, A. Pag-
nani, W. Kim, et al. A critical assessment of Mus
musculus gene function prediction using integrated
genomic evidence. Genome Biology, 9(Suppl 1):S2,
2008.

23. J. Platt. Sequential minimal optimization: A fast
algorithm for training support vector machines. Ad-
vances in Kernel Methods-Support Vector Learning,
208, 1999.

24. Foster J. Provost, Tom Fawcett, and Ron Kohavi.
The case against accuracy estimation for comparing
induction algorithms. In J. Shavlik, editor, ICML
’98: Proceedings of the Fifteenth International Con-
ference on Machine Learning, pages 445–453, San
Francisco, CA, USA, 1998. Morgan Kaufmann Pub-
lishers Inc.

25. V. Punyakanok, D. Roth, W. Yih, and D. Zi-
mak. Learning and inference over constrained out-
put. Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 1124–
1129, 2005.

26. M. Rogers and A. Ben-Hur. The use of gene on-
tology evidence codes in preventing classifier assess-
ment bias. Bioinformatics, 25(9):1173–1177, 2009.

27. J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-
Taylor. Kernel-based learning of hierarchical multi-
label classification models. The Journal of Machine
Learning Research, 7:1601–1626, 2006.

28. B. Schölkopf, J. Weston, E. Eskin, C. Leslie, and
W.S. Noble. A kernel approach for learning from al-
most orthogonal patterns. Proceedings of the 13th
European Conference on Machine Learning, pages
511–528, 2002.

29. B. Taskar, V. Chatalbashev, D. Koller, and
C. Guestrin. Learning structured prediction models:
A large margin approach. In Twenty Second Interna-
tional Conference on Machine Learning (ICML05),
2005.

30. B. Taskar, C. Guestrin, and D. Koller. Max-margin
Markov networks. Advances in Neural Information
Processing Systems, 16:51, 2004.

31. I. Tsochantaridis, T. Joachims, T. Hofmann, and
Y. Altun. Large margin methods for structured and
interdependent output variables. The Journal of Ma-
chine Learning Research, 6:1453–1484, 2005.

32. K. Tsuda, H.J. Shin, and B. Schölkopf. Fast pro-
tein classification with multiple networks. In ECCB,
2005.

33. CJ Van Rijsbergen. Information Retrieval.
Butterworth-Heinemann Newton, MA, USA, 1979.

34. A. Vinayagam, R. K onig, J. Moormann, F. Schu-
bert, R. Eils, K.-H. Glatting, and S. Suhai. Ap-
plying support vector machines for gene ontology
based gene function prediction. BMC Bioinformat-
ics, 5:178, 2004.

