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Abstract: In order to evaluate protein sequences for simultaneous satisfaction of evolutionary and physical constraints,
this paper develops a graphical model approach integrating sequence information from the evolutionary record of a protein
family with structural information based on a molecular mechanics force field. Nodes in the graphical model represent
choices for the backbone (native vs. non-native), amino acids (conservation analysis), and side-chain conformations
(rotamer library). Edges capture dependence relationships, in both the sequence (correlated mutations) and the structure
(direct physical interactions). The sequence and structure components of the model are complementary, in that the
structure component may support choices that were not present in the sequence record due to bias and artifacts, while the
sequence component may capture other constraints on protein viability, such as permitting an efficient folding pathway.
Inferential procedures enable computation of the joint probability of a sequence-structure pair, thereby assessing the
quality of the sequence with respect to both the protein family and the specificity of its energetic preference for the
native structure against alternate backbone structures. In a case study of WW domains, we show that by using the joint
model and evaluating specificity, we obtain better prediction of foldedness of designed proteins (AUC of 0.85) than
either a sequence-only or a structure-only model, and gain insights into how, where, and why the sequence and structure
components complement each other.

1. INTRODUCTION

Understanding the interrelationship among protein se-
quence, structure, and function is a central challenge in
protein science. On the one hand, we can adopt a physi-
cal perspective, modeling the energetics determining the
structure (and thereby function) of an amino acid se-
quence. On the other hand, we can adopt an evolutionary
perspective, modeling the constraints on sequence modi-
fications that are acceptable in maintaining structure and
function. We seek here to unify these two perspectives.

The sequence-structure-function interrelationship
also has implications in significant applications such as
rational protein engineering, in which a variant or novel
protein is designed for desired properties such as struc-
ture 4, 18, 8 or catalytic activity 22, 20. Some design meth-
ods focus on sequence and function, selecting amino
acids based on homology to existing proteins 14, 21.
Other design methods focus on the structure, employing
physical models to identify sequences with low internal
energies for a prescribed backbone structure 4, 20.

By focusing on just sequence or just structure,
existing design methods lose important information.
Sequence-based methods may be myopic, not consider-

ing mutations that are energetically acceptable but are not
part of the evolutionary record (as currently sampled). At
the same time, structure-based methods may not account
for interactions that aren’t evident in the native struc-
ture, such as those relevant to protein folding. Interest-
ingly, conservation-based sequence statistics have been
used as the metric by which to evaluate the plausibility of
structure-based designs 17.

Another disadvantage of sequence or structure-
only design algorithms is that they cannot account
for sequence-structure specificity, whether a sequence
prefers the target structure over alternatives. A few algo-
rithms have been proposed to address the issue of speci-
ficity 18, 2, 10. But these have been tried for only small
peptides 2, or have been shown to produce sequences that
exhibit non-natural folding pathways29, indicating the
need for better approaches. By modeling the joint proba-
bility over sequence and structure, our approach naturally
accounts for sequence-structure specificity.

This paper presents a graphical model approach
(Fig. 1) in which we integrate sequence and structure
information into a joint model, and use the joint model to
evaluate sequence-structure pairs for simultaneous satis-
faction of evolutionary and physical constraints, as cap-
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tured in the joint probability under the model. Our model
can thus assess whether a possible sequence preserves
amino acid combinations that are favorable in the se-
quence record and that lead to energetically favorable in-
teractions. It can trade off between these two aspects,
accepting amino acids that didn’t appear in the sequence
record but have good energies, or those that don’t appear
to have good energies, but are prominent in the sequence
record.

We demonstrate our method in a retrospective anal-
ysis of designed WW domain proteins 26, classifying 77
new sequences against a model integrating sequence in-
formation from a family of 42 wild-type WWs with struc-
ture information for the WW domain fold and near-native
alternate backbone conformations. We show that the joint
model performs better at this task than either a sequence-
only model or a structure-only model. That is, the two
sources of information are complementary. In particu-
lar, we show that sequence-based aspects of the model
decrease false positives, while structure-based ones de-
crease false negatives.

In summary, the primary contribution of this paper
is the first graphical model for sequence-structure speci-
ficity. In contrast to Ref. 8, our model considers both
native and non-native structures. We use the graphi-
cal model to classify putative WW domain sequences,
demonstrating that our model is more accurate (AUC of
0.85) than a sequence-only or a structure-only model for
the same task. While we focus on modeling sequence-
structure specificity, our approach can be extended for the
design of proteins to maximize this specificity using sam-
pling 28 or other inferential techniques 8.

2. METHODS

We describe how to construct and utilize a probabilistic
model integrating sequence and structure information for
a specific protein family. The model has the following
state space and variables, detailed in the rest of this sec-
tion.

Sequence Let S = 〈S1, S2, . . . , Sn〉 be a vector of ran-
dom variables for the amino acid content of a
protein with n residues. The set of all pos-
sible protein sequences is S , and s ∈ S is
one such sequence composed of amino acids

〈s1, s2, . . . , sn〉.
Backbone Let B be the random variable representing the

backbone conformation (i.e., 3D coordinates for
all backbone atoms).

Side-chain conformations Let R = 〈R1, R2, . . . , Rn〉
represent the side-chain conformations (ro-
tamers), R the set of all possible rotamers, and
r = 〈r1, r2, . . . , rn〉 the side-chain conforma-
tions of the protein. Since allowed rotamers at
a position depend on the amino acid, let Rs be
the set of rotamers that are consistent with the
choice of the sequence s (i.e., the states that
have non-zero measure when conditioned on the
event S = s.)

The model then provides a joint distribution over
the sequence and structure variables, defining probabil-
ities of interest in evaluating proteins (Sec. 2.1). It can
be efficiently constructed and stored (Secs. 2.2, 2.3, and
2.4), and supports inference of the probabilities of inter-
est (Sec. 2.5).

2.1. An Integrated Probabilistic Model
of Sequence and Structure

We model the conditional distribution over backbone and
side-chains for a given sequence as a Boltzmann distribu-
tion of the form:

P (B = b,R = r|S = s) =
1
Zs
e−E(r,b) (1)

where Er,b is the energy of all atoms (backbone and side-
chain) of the protein as computed by a molecular me-
chanics force-field; andZs the sequence-specific partition
function

∑
r∈Rs,b∈B e

−E(r,b) over backbone and side-
chain conformation space ensures that we have a prob-
ability measure. ∗

The joint distribution therefore has the form

P (B = b,R = r,S = s) =
1
Zs
e−E(r,b)P (S = s), (2)

where P (S = s) is a prior distribution of amino acids for
this protein family.

Given this joint distribution, we can determine vari-
ous probabilities of interest by marginalizing out the re-
maining variables. This leads to a set of different ob-
jective functions by which to evaluate a designed pro-
tein sequence. Most energy-based approaches to pro-
tein design for example assume a fixed backbone b0, and

∗For ease of presentation, all energies shown here are in kBT units
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Fig. 1. Overview of our approach. The input to the method consists of (i) the native backbone, (ii) a set of alternative backbones,
and (iii) a multiple sequence alignment (MSA). These data are integrated into a Probabilistic Graphical Model (PGM) with a single
node (shown in red) encoding the choice of backbone, and a sequence (green) and side-chain (blue) node encoding the choices for
each residue position. Edges in the PGM capture residue couplings based on the MSA (dashed edges) and structure (solid edges).
The resulting joint model can be used to evaluate the joint probability over a given sequence and any backbone. A sequence is said to
be specific to a backbone if their joint probability is highest.

find the sequence with the best (i.e., lowest) energy for
this backbone. Under a Boltzmann distribution, nega-
tive energies are related to probabilities by an exponen-
tial factor. Thus, finding the best sequence for a given
backbone b0 is the same as finding the most likely se-
quence for that backbone, i.e., arg maxS P (S|b0). Sim-
ilarly, given a sequence s, finding the best backbone is
the same as finding the most likely structure for that
sequence, i.e., arg maxB P (B|s). These are different
objective functions, and the backbone that maximizes
arg maxB P (B|s) may not be b0. In other words, the
conformation adopted by a sequence need not be that for
which it was designed.

We take advantage of our probabilistic model to de-
velop an objective function overcoming this pitfall by
accounting for sequence-structure specificity. To do so,
note that the joint probability P (S,b0) incorporates both
how good the sequence is for the backbone, and how

good the backbone is for the sequence.

P (B = b,S = s) =
∑

r∈Rs

P (B = b,R = r,S = s)

=
1
Zs
Zb,sP (s)

where Zb,s =
∑

r∈Rs e−E(b,r) is the sequence- and
backbone-specific normalizing constant and Zs =∑

b∈B Zb,s is the sequence specific normalizing constant
Notice that the joint probability automatically incorpo-
rates the propensities for competing backbones via the
partition function Zs.

In the results, we compare predictive power of the
joint probability P (B = b,S = s) with the power of the
conditional probability

P (B = b|S = s) = P (B = b,S = s)/P (S = s)

=
1
Zs
Zb,s

and the power of the sequence prior P (S = s) in deter-
mining the foldability of a set of sequences.



Notice that the conditional probability evaluates the
quality of the backbone for the sequence, but does not
assess the quality of the sequence itself, P (S = s), thus
using only structural information, while P (S = s) ig-
nores any structural information. The joint probability,
however, incorporates both sources of information.

Unfortunately, these distributions are over extremely
large spaces. For example, the joint distribution is de-
fined over a state space of size |R × B × S|, which is
exponential in the number of residues in the protein. In
order to efficiently reason about the joint distribution, we
use a Probabilistic Graphical Model (PGM) to compactly
encode the entire probability distribution.

A PGM is defined as a graph over a set of random
variables X and a set of functions F called factors; given
an instantiation x of these variables, the probability P (x)
according to the PGM is given by a normalized product
over the factors:

P (X = x) =
1
Z

∏
fa∈F

fa(xa) (3)

where Xa is the set of variables connected to factor fa
in the factor graph. While the factor graph is usually
depicted as a bi-partite graph, it can be equivalently de-
picted as a chain-graph 32, a form we use for its clearer
physical interpretability. In this form, an edge between
vertices in the graph encodes for a direct dependence
quantified by a factor over the edge, while the lack of an
edge encodes a conditional independency. Factors over
variables quantify the prior distribution over the vari-
ables.

A PGM can represent nearly any probability distribu-
tion, but it is particularly useful in providing a compact
encoding of multivariate probability distributions which
have conditional independencies between their variables.
In the following, we will construct a PGM over the R,
B, and S variables, one variable at a time. By account-
ing for the conditional independencies at each stage, we
can compactly encode the entire distribution, allowing us
to efficiently and accurately compute the probabilities of
interest as described in Sec. 2.5.

2.2. Side-Chains: Probabilistic
Graphical Model for P (R|B, S)

Let us first assume that we already know the amino acid
sequence and backbone conformation, and want to evalu-
ate a set of side-chain conformations. Due to the nature of

physical interactions, the energy of interaction between
atoms falls off rapidly with distance; in many practical
implementations of molecular mechanics force-fields, it
is set to zero beyond a threshold distance. For example,
in the toy peptide in the top left of Fig. 1, while we may
consider the interaction energies between the side-chains
of the first and last residue, we may ignore as negligi-
ble those between these side-chains and the side-chain
that would be placed in the middle of the turn. How-
ever, there may be indirect influences, where one side-
chain interacts with another which interacts with a third,
although the first and third do not directly interact. If we
use random variables R1, R2, R3 for the choice of three
such side-chain conformations, then in statistical terms,
we say thatR1⊥R2|R3, i.e., R1 andR2 are conditionally
independent of each other when conditioned on R3.

We 12 and others 31 have previously developed prob-
abilistic graphical models to encode all such conditional
independencies between side-chain variables, given the
sequence and backbone conformation (blue subgraph in
Fig. 1). By exploiting the large number of conditional in-
dependencies present in the distribution, the model dra-
matically reduces the space-complexity needed to store
the distribution from exponential space to polynomial
space (typically O(n)). We refer to the previous publica-
tions for details of the model; in summary a PGM is con-
structed among variables R = 〈R1, . . . , Rn〉 represent-
ing a side-chain conformation among a discrete set of ro-
tamers. A backbone-dependent rotamer library 3 is used
to perform this discretization. Variables that are situated
at a distance lower than a threshold according to the back-
bone are connected by an edge. A factor ψi,j(ri, rj) =
exp(−Eb(ri, rj)) is computed for each pair of variables
connected by an edge using the ROSETTA force-field to
compute the energy Eb(ri, rj) between rotamers ri, rj
according to backbone b which is composed of the fol-
lowing terms:

• Eljatr, Eljrep, the attractive and repulsive parts
of a 6 − 12 Lennard-Jones potential used to
model van der Waals interactions.

• Esol, the Lazardus-Karplus solvation energy
that approximates the solvation energy by using
an implicit solvent 19.

• Ehb, the Hydrogen bond energy 16.

Eb is then a linear combination wTE =
wljatrEljatr +wljrepEljrep +wsolEsol +whbEhb. The



vector w that defines the linear combination is typically
learnt by fitting the energy terms to physical observations
like ∆∆G. We use the value of w previously reported 15.

The backbone dependent library also defines a prior
distribution for each rotamer; this is incorporated by a
factor ψi for each Ri.

2.3. Backbone: Probabilistic Graphical
Model for P (R, B|S)

Now let us consider accounting for variability in the
backbone conformation, computing P (B,R|S). Sec. 2.2
describes the PGM for P (B|R,S); the extended PGM
for P (B,R|S) essentially imposes a mixture model
over backbones by using the fact that P (B,R|S) =
P (R|S,B)P (B|S). In the red+blue subgraph in Fig. 1,
energetic interactions between backbone atoms and side-
chain atoms (E(ri,b)) are shown with red edges, while
interactions between side-chain atoms (Eb(ri, rj)) are
shown with blue edges. The energetic interactions within
backbone atoms (E(b)) is stored as a vertex factor in the
backbone variable. In all cases, the factor is defined as
exp{−E} where E is the energy of the specific interac-
tion.

Notice that the choice of the factors, along with Eq. 3
and the fact that E(r,b) = E(b) + Eb(r), leads to the
probability of a specific choice for r,b, P (R = r,B = b)
being exactly the value according to the Boltzmann distri-
bution. Thus, the red+blue subgraph exactly encodes the
Boltzmann distribution over a discrete set of backbone
and side-chain conformations.

There are multiple approaches to generating back-
bone traces similar to a specific backbone. The physically
most accurate is to run a molecular dynamics simulation
starting from the crystal backbone. This approach is com-
putationally very demanding, rendering it unsuitable for
our purposes. Other approaches attempt to generate re-
alistic backbone conformations by focusing on geomet-
ric constraints 30, 5. We generated discrete set of back-
bone conformations using “backrub” motions5 — preva-
lent but subtle modes of local backbone motions observed
in crystal structures. Incorporating backbone flexibility
using such motions has been shown to improve side-chain
prediction and protein design 25, 7, 9. We used the “back-
rub” mode in ROSETTA to generate a sample of 20 back-
bones for each protein sequence, resulting in backbones
deviating as much as 2.0 Å RMSD away from the crystal
structure. Our choice of “backrub” motions as a means

of generating alternate backbones is not prescriptive; our
modeling allows the use of any method to generate back-
bone samples. Indeed we expect that other methods that
sample larger areas of the conformation space will be
necessary in order to model more complex domains. We
hope to study such approaches in future work.

2.4. Sequence: Probabilistic Graphical
Model for Prior P (S)

For the sequence prior, we utilize our previous work in
developing undirected graphical models of residue cou-
pling 27, 28. While hidden Markov models (HMMs) pro-
vide a probabilistic basis for representing and reasoning
with conservation, in order to best predict whether a new
protein will be folded and functional, it is also necessary
to account for residue coupling 26, 24. Thus our models
generalize HMMs to account for coupling in addition to
conservation.

To construct this portion of our graphical model
(green part in Fig. 1), we start with a multiple sequence
alignment (MSA) F of the protein family being studied.
Standard conservation statistics provide the statistical en-
ergy for amino acid type a at residue position i:

φi(a) = −λ ∗ log(|{s ∈ F : s[i] = a}| / |F|) (4)

The corresponding factor of the PGM is then defined as
exp{−φi(a)} as earlier.

In practice, we employ “pseudo-counts” to ensure
that there is non-zero probability of any amino acid at
any position; this acknowledges the incompleteness of
the extant sequences. λ is a hyper-parameter of our model
which defines the strength of the statistical energy. In our
experiments, we choose a λ such that the statistical ener-
gies have the same importance as the structural energies.
This amounts to giving equal importance to both sources
of information.

Likewise, for a pair of coupled positions, the statis-
tical energy for a pair of amino acids a, b at a pair of po-
sitions i, j is based on the number of occurrences in the
family:

φi,j(a, b) = −λ∗log(|{s ∈ F : s[i] = a, s[j] = b}| / |F|)
(5)

again in practice adding pseudo-counts (now for each
possible amino acid pair).

The remaining question is which edges to include in
the model. Traditional residue coupling studies employ



one of a number of possible statistical and information-
theoretic metrics 6 to identify highly covarying residue
pairs, and simply list all such pairs. However, including
all such edges in a model may lead to incorrectly eval-
uating the joint probability. For example, in the MSA
in Fig. 1, including 2-4, 2-5, and 4-5 is in some sense
“double counting” the 2-4-5 relationship, since once we
have evaluated a sequence for consistency against two of
the three edges (say 2-4 and 2-5), there’s no additional
information provided by testing the third edge. Thus in
a graphical model, we “factorize” the relationships into
direct and indirect dependencies, as well as independen-
cies. The semantics are such that a residue is condition-
ally independent of all others, given its immediate neigh-
bors. Edges capture direct relationships, multi-edge paths
capture indirect relationships, and residues with no path
between them are independent. Note that there is not nec-
essarily a unique way to separate direct vs. indirect rela-
tionships, but that several factorizations may be equally
valid (except for noise and effects of small counts), cap-
turing the same information about the constraints and ex-
pressing the same probability model.

We have developed an algorithm for learning the
edges of a graphical model of residue coupling, and
demonstrated its effectiveness in a variety of proteins, in-
cluding GPCRs and PDZs 27. The algorithm considers
a set of residues pairs deemed to have significantly sig-
nificant covariation according to a χ2 test (i.e., the num-
ber of pairs of some amino acid types is much more than
would be expected if the positions were independent). It
then incrementally adds edges to a growing model. When
choosing the next potential edge to add, it evaluates the
impact on the residual coupling across the protein, as de-
termined by a conditional mutual information score. That
is, it seeks edges that not only connect coupled residues,
but are also good “decouplers”, rendering other residues
conditionally independent (in keeping with the underly-
ing semantics of the model).

2.5. Inference: Computing Zb,s, Zs

Given a PGM as described in the previous sections, our
task is to now compute the joint probability of a sequence
s in a backbone b, P (b, s), the prior probability of s for
this protein family P (s) and the conditional probability
of s for backbone b, P (b|s). As derived in Sec. 2.1, these
probabilities depend on Zb,s, Zs.

We use a statistical inference algorithm called loopy

Belief Propagation 23 (LBP or simply BP) to compute
Zb,s. Statistical inference algorithms like BP compute
marginal distributions over the random variables in the
graph. BP takesO(|E|) time per iteration, where |E| is the
number of edges in the graph; in acyclic factor graphs BP
takes two iterations. The PGMs considered here however
are not trees; in such cases BP is run until the iterations
converge. Significantly, it has been proved, that using
BP 23 is equivalent to using the Bethe approximation 1

of the log of the partition function. This approximation
is quick and has been shown to accurately predict exper-
imentally verifiable properties of the protein (changes in
free energies) 12, 13. We can thus use BP on the PGM
encoding P (R|B,S) to efficiently and accurately approx-
imate Zb,s, the partition function specific to a sequence
and backbone, i.e., over all rotamers. Given this approx-
imation to Zb,s to each backbone b, the Zs can be easily
computed using its definition according to Eq. 3.

While convergence of Belief Propagation on loopy
graphs is not guaranteed, it has always done so in our ex-
periments. This behavior of BP has been previously re-
ported by us12, 11 and others. It is possible that the graph-
ical models we consider here lack the so-called “frus-
trated coupling” behavior that usually results in BP fail-
ing to converge. It must be noted however that the conver-
gence properties of BP and related inference algorithms
is a subject of active research, making a rigorous justifi-
cation of convergence difficult.

3. RESULTS

We performed a detailed case study of our approach in
analysis of WW domains, taking advantage of the exis-
tence of a relatively large set of artificial proteins gen-
erated and experimentally evaluated by the Ranganathan
lab 26, 24.

3.1. Joint Model Construction

We used the backbone structure from the NMR structure
of the WW domain of the ubiquitin ligase NEDD4 (PDB
ID 1I5H) as our native backbone. Decoy backbones were
generated using ROSETTA’s backrub generating mode,
which generates backbones by manipulating the back-
bone dihedrals and pruning away energetically unfavor-
able conformations 25, 5. We generated 20 alternate back-
bones for each sequence in the dataset. Our results are
not sensitive to the choice of number of backbones, and



are nearly identical even if we use as few as 4 backbones
or as many as 40 backbones. We stress the fact that our
choice of generating backbones is not binding; indeed we
expect that for larger proteins, alternate strategies of gen-
erating backbones will have to be used in order to effi-
ciently sample the equilibrium backbone conformational
space.

For the sequence portion of our model, we used an
MSA of 42 natural WW domains provided by the Ran-
ganathan lab 26; our results are similar when incorporat-
ing additional sequences obtained by PSI-BLAST. We se-
lected the 34 columns represented in the backbone struc-
ture.

The sequence coupling model factorizes the statisti-
cally significant residue couplings (p value of 0.005, or
8.91 · 10−6 after a Bonferroni adjustment) into a set of
25 edges. The structure coupling model puts an edge be-
tween variables for residues withCα atoms closer than 10
Å, yielding 201 edges. This threshold is sufficient to en-
sure that all non-zero energies of interaction according to
the ROSETTA force-field 15 are incorporated. The joint
model, which is a union of the two models, thus consists
of 214 edges. The potentials under the joint model are
a linear combination of the potential scores under the in-
dividual models. That is, joint score = structure model
score + sequence model score. We chose λ = 0.26 as
this was the ratio of the score ranges from the two model
components. This choice equalizes the contributions of
the two components as explained in Sec. 2.4.

Instead of using the probabilities listed in the meth-
ods section, it is convenient to use their logarithms. Due
to the monotonicity of the logarithm, this does not affect
our results in any way and has the benefit of being nu-
merically more stable. Additionally, we ignore any uni-
versally common normalizing factors (that do not depend
on instantiation of s,R or B), since they are constant ad-
ditive factors in the log probabilities that do not affect
the classification results. We refer to the log probabilities
log(P (s)), log(P (b0|s)) and log(P (b0, s)) as sequence,
structure and joint scores respectively to reflect the source
of information that they incorporate.

3.2. Predictive power

We evaluate our model against the collection of 77 ar-
tificial sequences evaluated for foldedness by the Ran-
ganathan lab 26. We compare and contrast the predictive
power of a sequence-only model P (S), a structure-only

model P (B|S), and our joint model P (B,S), in terms of
the area under the curve (AUC) of the receiver operat-
ing characteristic (ROC) curve (Fig. 2). The AUC of the
sequence-only model is 0.82, while that of the structure-
only model is 0.75. The joint model provides an AUC
of 0.86, an improvement over both the individual mod-
els. The figure also shows the AUC for the joint model
when no competing backbones are allowed (“w/o speci-
ficity”). As can be seen, the performance of the models
when no structural specificity is encoded is significantly
lower (AUC falls from 0.75 to 0.62 in the structural model
and from 0.86 to 0.80 in the joint model).

The sequence-only model has high true positive rate
(TPR) for low values of false positive rate (FPR), but
doesn’t retrieve all true positives until the FPR is nearly
0.7. The structure model with backbone specificity, on
the other hand, has lower TPR than the sequence only
model, but is able to retrieve all true positives by the time
FPR=0.5. The joint model is able to capture the best be-
havior of both models by obtaining high TPR for low val-
ues of FPR and retrieving all true positives by the time
FPR=0.5.

The primary parameter in the joint model is our
choice of scaling factor, λ, for weighting the potential
scores under the two models. Our results are not sensi-
tive to the choice of λ: the AUC of the joint model is
similar for values of λ between 0.2 and 1.0.

Fig. 3 shows the scores of the two sources of infor-
mation — the sequence prior (on the y-axis, in log scale)
and the structural specificity (on the x-axis, in log scale).
This figure clearly shows the complementary nature of
the two sources of information: each model perfoms rea-
sonably well by itself, but more importantly they models
differ in the sequences that they misclassify. The joint
model which integrates both sources of information is
thus able to outperform both the models.

3.3. Model analysis

There are a few interesting observations which explain
the increased AUC of the joint model. The sequence
model has a lower TPR, i.e., it has more false negatives
than the structure model, and hence the joint model does
well on this part due to addition of structure knowledge.
On the other hand, the FPR is high under the structure
only model, whereas the sequence only model has a much
lower FPR and hence the joint model does well on this
part because of the additional sequence information.
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Fig. 3. Scatter plot of the log probabilities of the structural score (log P (b0|S), on the x-axis) and of the prior distribution (log P (S), on the y-axis)
for the sequences in the test set. The true positives (cc-folded) are shown in green triangles while the false positives are shown in blue circles and red
squares.

To obtain a more detailed understanding of the un-
derlying interactions producing these behaviors, we com-
puted a score for each edge with respect to each protein
in the test set. The score for an edge i, j according to
the sequence model is simply its contribution to the to-
tal score, λφi,j(a, b). For an edge in the structure model,
it is harder to assign an individual score since the score
for a sequence is a difference in the log partition func-
tions, a term that isn’t decomposable into a sum of edge-
wise scores. We therefore approximate this term by its
first order moment, a value that physically corresponds to
the difference in the average energy of interaction of this

edge between b0 and the most favorable backrub struc-
ture. The score between a pair of residues that were con-
nected by both a sequence edge and a structure edge was
simply the sum of the scores of the individual compo-
nents. Given this score, we ranked the edges based on de-
creasing hinge loss in classifying the sequence correctly
(top rank implies more predictive edge).

Fig. 3.3 shows the composition of the edges (se-
quence only, structure only, common) in the ranked list.
In the top ten, there are 3 exclusive to the sequence model,
1 exclusive to structure coupling model, and 6 common
to both. These top ten edges are shown as dashed edges
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Fig. 5. Top-ranked edges, color-coded according to model (red:sequence only, green:structure only, blue:structure and sequence), visualized in the
backbone trace of the WW structure used as native in our study (PDB ID 1I5H).

in the pdb structure in Fig. 5. The common edge be-
tween residue positions 478 and 485 (both in a β-sheet) is
ranked low in the sequence coupling model, but is ranked
the highest in the structure coupling model. The lack of
sufficient data in the training set for this interaction re-
sults in its low score (average score of this interaction in
the test set was nearly half the score of interactions in the
training set). This is however compensated by the struc-

ture information which captures the importance of this
interaction.

The edge between residue positions 468 and 474 is
ranked high in the sequence coupling model, but ranked
rather low in the structure coupling model. The low
rank in structure coupling is due to the two positions be-
ing distally located in the protein leading to a negligi-
ble energy of interaction. This is an instance of infor-



mation being captured by the sequence coupling model,
that was not captured well by the structure model, and
hence this improves the performance of the joint model.
Amongst the top ranked joint model edges, edges which
are exclusively in the sequence coupling model are those
that explain important long range interactions between
residues, and which are missing under the structure cou-
pling model.

4. CONCLUSIONS AND FUTURE
WORK

We have developed and demonstrated a model that in-
tegrates information from both structure and sequence
to accurately and efficiently model sequence-structure
specificity. Our results indicate that by integrating these
complementary sources of information, this model is able
to outperform each of its individual components.

Since our probabilistic framework models the
sequence-structure specificity well, it can also be used
to design sequences for such specificity using inferential
procedures. This, and other related goals, are the focus of
our current research.
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