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Motivation: Bi-clustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar 

expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. The bi-clustering 

strategy has been widely used for analyses of gene expression data and beyond since it was first proposed in 2000 since it provides 

much increased flexibility and analysis power in identifying co-expressed genes under some but not necessarily all conditions, 

compared to traditional clustering methods. Still the real power of this clustering strategy is yet to be fully realized due to the lack of 

effective and efficient algorithms for reliably solving the bi-clustering problem. 

Results: We present a novel method to solve a bi-clustering problem, using a (traditional) clustering algorithm combined with a 

combinatorial technique. The algorithm achieves the same asymptotic computational complexity of the underlying clustering algorithm. 

While it is a heuristic algorithm in nature, the algorithm achieves close-to optimum classification results across a large collection of 

benchmark sets. 

 

1.   INTRODUCTION 

DNA microarrays provide a powerful means for 

probing the functional states of a cell population by 

allowing simultaneous observation of mRNA expression 

patterns of all their genes collected over time and/or 

under different experimental conditions. By comparing 

the gene expression patterns collected under different 

conditions such as cancerous versus healthy tissues, one 

can possibly derive information about genes associated 

with a particular cellular condition (e.g., cancerous cells 

at a specific developmental stage). To analyze the 

complex microarray data, a large number of 

computational tools have been developed. Among them, 

clustering of genes based on their similar expression 

patterns (co-expressed genes) using (traditional) 

clustering strategies
6,18,27

 represents one of the most 

popular techniques for microarray data analyses.  

The traditional clustering techniques attempt to, in 

the context of microarray data analyses, partition a set of 

genes into ―clusters‖ with similar expression patterns 

under specified conditions
26

 or identify such clusters 

from an otherwise unstructured microarray dataset
6
. 

While useful, such clustering algorithms are known to 

be inadequate for handling the general gene-expression 

analysis problems, which often need to identify co-

expressed genes under some to-be-identified conditions 

in contrast to finding co-expressed genes under all given 

conditions. The difficulty in handling the general co-

expression identification problem is that for any n given 

conditions, there are 2
n 
subsets of conditions to consider, 

making this general clustering problem much more 

difficult to solve. The first algorithm for attempting to 

solve this problem, called a bi-clustering problem, was 

developed by Cheng and Church
5
, which attempts to 

find subsets of conditions under which some (to be 

identified) subsets of genes have similar expression 

patterns, using an iterative heuristic strategy. This work 

inspired further development of more effective bi-

clustering algorithms in the past few years, including the 

work by Kung et al
14

and the work by Li et al. using a 

Markov Chain Monte Carlo algorithm to search for bi-

clusters
15

, having led to a number of publicly available 
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computer servers for bi-clustering analyses of 

microarray data
22, 24

. 

A popular way to visualize microarray data for bi-

clustering analyses is to represent the dataset as a matrix 

with rows representing the genes and columns 

representing the conditions (or the other way around) 

with each element of the matrix representing the relative 

mRNA abundance of a gene under a specific condition.  

Intuitively, a bi-cluster can be identified through row- as 

well as column-swapping of the original matrix, leading 

to a sub-matrix in a rearranged matrix consisting of 

genes with similar expression patterns. When multiple 

(non-overlapping) bi-clusters are identified through such 

row and column swappings, the resulting matrix is 

called to have a ―checker-board structure‖ 
13, 17

.  

Formally a bi-clustering problem can be defined as 

to find one or all (possibly overlapping) sub-matrices of 

a given matrix, each of which shares a pre-defined 

property over the elements across all its columns (or 

rows). Each such sub-matrix is called a bi-cluster. 

Examples may include sub-matrices with similar 

columns (or rows) or sharing more complex column-

wise (or row-wise) relationships. One simple example is 

the one used in
17

 in which each column of a to-be-

identified sub-matrix should consist of elements of the 

same numerical value. In this paper, we first present an 

algorithm for solving a class of bi-clustering problems 

with the following property: each to-be-identified sub-

matrix of a given matrix should have almost identical 

rows, defined in terms of an additive error, and will then 

explain how to generalize the algorithm to solve more 

general bi-clustering problems.  

Prior to our work, several bi-clustering methods 

have been developed using combinatorial techniques, 

such as SAMBA
23

. A central idea of most of these 

algorithms is to formulate the bi-clustering problem as a 

maximum balanced bipartite subgraph problem. Though 

intuitive, this problem formulation is intrinsically 

computationally intractable, even for a 0-1 matrix, 

indicating that there are no effective and efficient 

algorithms for solving the problem.  Though our 

algorithm is a heuristic one, it can generally achieve the 

optimal bi-clustering results on the test sets of our study, 

and does so efficiently. The basic idea of the algorithm 

is to first create a weighted complete graph G with genes 

represented as vertices and with edges connecting every 

pair of genes with their weights representing similarities 

between the corresponding genes‘ expression patterns. 

Intuitively, genes in a bi-cluster should induce a heavier 

subgraph because under the ―right‖ conditions, these 

genes have the same or highly similar expression 

patterns. Our goal is to identify the heavy subgraphs in 

G corresponding to such bi-clusters hidden in the 

microarray data. The effectiveness of our algorithm lies 

in our ability to quickly zoom on such conditions that 

give rise to a bi-cluster in each iteration of the 

algorithm.  

We have assessed the performance of our algorithm 

on a benchmark set developed by Prelic et al 
19

, and 

found that our algorithm performs better than all the 

popular bi-clustering algorithms, such as ISA
10

, 

BIMAX
19

, SAMBA
23

 and RMSBE
16

. We have then 

further applied our algorithm to a number of microarray 

datasets for cancer type classification, and the results 

have led to a number of new insights about these cancer 

microarray data. 

2.   METHODS 

Consider an n×m matrix M of microarray gene 

expression data with n genes collected under m 

conditions, with each gene corresponding to a row and 

each condition to a column. For the simplicity of 

discussion, we assume, without loss of generality, that 

the numerical values of the matrix M are from a finite 

set (this can be achieved through discretization) Σ with 

its cardinality σ = |Σ|, and each value is referred to as a 

letter. We assume that the background expression 

values, i.e. the entries outside the (bi-cluster) sub-

matrices of M to be identified, are uniformly and 

independently distributed over Σ. Define a weighted 

graph G on M, in which the vertex set V consists of 

genes and the edge set E consists of all pairs of genes. 

Each edge, connecting two genes, has a weight, defined 

as the number of common letters in the corresponding 

positions between the two corresponding rows of M. 

Throughout the paper, we use ―the number of common 

letters‖ between two rows (genes) to mean the above. It 

is known that a special case of this bi-clustering 

problem, i.e., when M is a binary matrix, is NP-hard 

through reducing a maximum balanced bipartite 

subgraph problem to it
23

. Hence our general bi-

clustering problem is NP-hard. 

Intuitively, a bi-cluster in M corresponds to a 

―heavier‖ (connected) subgraph of G compared to an 

arbitrary subgraph not overlapping such bi-cluster 

subgraphs, whose total weight is stochastic, and should 



        

in general follow a normal distribution (based on the 

Central Limit Theorem). Specifically, two genes from 

the same bi-cluster should have a heavy weight by 

nature while two arbitrary genes may have a heavy edge 

only by chance. Our bi-clustering algorithm is built on 

this observation. It is not difficult to convince ourselves 

that not all heavy subgraphs represent bi-clusters. The 

key to effectively solving the bi-clustering problem is to 

efficiently identify such heavy subgraphs under 

consistent sets of conditions, i.e., that may correspond to 

bi-clusters.  

Our algorithm iteratively identifies heavy subgraphs 

as follows. In each iteration, the algorithm starts with the 

heaviest available edge as the seed of a new bi-cluster, 

labels as the (current) consensus the maximal subset of 

letters common to the two corresponding rows, and then 

extends it to a bi-cluster with a maximal size by 

repeatedly adding the next gene whose expression 

pattern is most consistent with the current consensus and 

updating the consensus if needed. We do this using 

every edge as a seed unless the edge has been included 

in a previously found bi-cluster or deemed to be 

ineligible as a seed (see the following paragraph); then 

we pick the one with the largest cardinality as the bi-

cluster prediction for the current iteration. The algorithm 

iterates until no eligible seed is left. Though our 

algorithm is greedy in nature, it does not in general 

suffer from the issue of getting stuck in local optima 

since it considers all possible seeds of a to-be-identified 

bi-cluster.   

The algorithm uses a parameter k as the lower 

bound on the dimension of the bi-clusters to be 

identified, possibly provided by the user. In our 

program, the edges with weights lower than k were first 

filtered out from the edge set E(G) since they will 

clearly not be in any to-be-identified bi-clusters. Note 

that after the filtering step, the graph G may not be 

complete any more. We assume that the edges of E(G) 

are given as a sorted list S=e1, e2,…, e|E| with 

w(e1)≧w(e2)≧…≧w(e|E|). Our algorithm consists of the 

following three steps: 

Step 1 (Seeding): We maintain a dynamic set S of 

candidate seeds (edges). Initially S is set to be a sorted 

list of edges in the decreasing order of weights. In each 

iteration of the algorithm, we choose the first element of 

S as the seed, which will be deleted from S after the 

Expansion step. If the seed is part of a previously found 

bi-cluster, we will skip it and remove it from S; 

otherwise it will be used to produce a consensus as 

follows. Find all the conditions under which the two 

genes of the seed have identical letters and set this to be 

the current consensus C. Let V* be the vertex set V after 

removing the two vertices of the seed. We then find the 

next gene from V* whose expression pattern is most 

consistent with C and then update the consensus pattern 

C taking the new gene into consideration (the updated 

consensus may change its width). Repeat the above until 

five genes are included in C, which will be expanded in 

the Expansion step. We call the corresponding 

submatrix as the current bi-cluster. The updated 

consensus size is set to be its current width multiplied by 

five.  

We use 5 instead of 2 elements as the initial bi-

cluster candidate to avoid examining many spurious 

small ―bi-clusters‖. ―5‖ is determined empirically. In the 

Expansion step, we use two parameters c and d defined 

as the column-wise and row-wise conservation levels, 

respectively. c is defined as the minimum ratio between 

the number of identical elements in a column and the 

total number of rows in the current bi-cluster, while the 

d is defined as the minimum ratio between the number 

of identical elements between two rows and the length 

of the current consensus. Let r=min{c,d} be the overall 

conservation level with default value set to be 0.9 (the 

user can select his/her own value). r is used to deal with 

the situation of almost identical values in our bi-

clustering problem. Throughout our algorithm, we only 

keep those consensuses whose conservation levels are 

greater than or equal to r.  

Step 2 (Expansion): We first update the current bi-

cluster obtained in the Seeding step according to the 

parameters c and d. We then expand the current bi-

cluster as follows: add a gene from outside of the 

current bi-cluster whose expression pattern has the 

highest consistency with the current C, and update the 

current bi-cluster consistent with the parameters c and 

d. If C’s width is greater than or equal to k, we compare 

the current bi-cluster to the best one obtained so far 

using the current seed and then store the one with the 

larger size. Repeat the procedure until the consensus 

width is shorter than k or nothing is left from outside of 

the current bi-cluster. We then retrieve the best bi-

cluster for the current seed.  

For each predicted bi-cluster of size t × s, the 

smaller the size of M, the more significant the bi-cluster 

is. However, it is difficult to calculate the accurate 

(statistical) significance of a bi-cluster for the general 



 

case where t≦n and s≦m. Since the significance of a 

bi-cluster can be easily evaluated when t=n, we are able 

to approximately evaluate the significance of an 

arbitrary bi-cluster. Let X be a random variable denoting 

the number of columns with identical letters for a 

random t×m matrix defined on Σ. We know that X 

follows a binomial distribution, i.e., X～B(m, 1
1

t


). 

The probability that M has at least s columns with 

identical letters can be calculated as follows: 
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In our program, the probability that a submatrix of size 

at least t×s occurs in n×m matrix M was approximated 
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where Y is a random variable representing the number of 

rows of a bi-cluster.  

Step 3 (Significance evaluation):  Each identified 

bi-cluster of size t ×s is output as a candidate when the 

following  
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is lower than a pre-specified threshold (the default is 

0.01).  

The following gives a pseudo-code of our bi-

clustering algorithm that implements the above three 

steps: 

 

GCLUSTER  

Input: data matrix— a discretized microarray data; k—a 

specified lower bound on the width of the to-be-

identified bi-clustersr (the default value is 2); c, d—

conservation rates specified by the user (the default 

value is 1); n—the number of different candidates output 

by the algorithm; and P-value cutoff α.  

Output: bi-clusters output in the decreasing order of 

their significance. 

Initialization: Create a weighted graph G(V, E) as 

described above. Sort the edges in E(G) as a sequence 

S=e1, e2, …, e|E| such that w(e1)≧w(e2)≧…≧w(e|E|). 

WHILE i < n and S≠φ 

Choose the first element in S as a seed. 

1) Call the Seeding step to calculate the initial consensus 

pattern with five genes (the current bi-cluster). 

2) Call the Expansion step to expand the current bi-

cluster until the maximum one is reached. 

3) Call the Significance evaluation step to determine if 

the maximum bi-cluster output by the Expansion step is 

statistically significant based on if the value of  Eq.(3) is 

lower than the threshold α. 

       If (more significant) 

output the bi-cluster; 

Set i = i + 1; and remove the current seed from S 

and continue. 

 

It should be intuitively apparent that the algorithm 

has the following two distinct features: a) if a significant 

bi-cluster is being built but not completed in Step 2 due 

to some reason, leading to a failure of not recognizing 

the bicluster, this problem could be remedied later with 

multiple chances by using other edges of the bicluster as 

seeds. It can find all the statistically significant bi-

clusters because any pair of genes in a significant bi-

cluster has the opportunity to be a seed and the 

algorithm always works on the same input data set no 

mater how many bi-clusters have been output; b) The 

Expansion step ensures that it always outputs the most 

significant bi-cluster for each eligible seed, and 

therefore almost always gets close-to optimum bi-

clustering results.  

As mentioned in the Introduction section, our 

algorithm can be extended  to solve more general bi-

clustering problems, such as finding bi-clusters with 

rows (or columns) are linearly proportional to each 

other, i.e., each row can be represented by another row 

multiplied by some factor. In this case, we only need to 

redefine the weight of the graph G where each edge, 

connecting two genes, has a weight, defined as the 

maximum number of positions at which the expression 

patterns of the two genes are linearly proportional.  

From the argument of the algorithm, the 

computational complexity of the algorithm has the same 

asymptotic complexity to that of its underlying 

clustering algorithm because each bi-cluster is greedily 

expanded from a seed just as traditional clustering 

methods did. 

 

3.   RESULTS 

We have assessed the performance of our bi-

clustering algorithm on several benchmark sets that have 

been used by previous algorithms, which we now 

describe. We will then discuss two applications of the 

algorithm on biological data. 



        

3.1.   Tests on synthetic benchmark 

datasets  

To assess the performance of our bi-clustering 

algorithm GCLUSTER, we first tested it on well-

controlled datasets. We applied GCLUSTER to a 

synthetic benchmark set first used by Prelic et al
19

. 

Prelic et al. simulated two types of bi-clusters – 

‗constant‘ bi-clusters and ‗coherent‘ bi-clusters
17

, where 

‗constant‘ bi-clusters refer to sub-matrices containing 

identical values for all entries, while the more general 

model – ‗coherent‘ bi-clusters are sub-matrices with 

values identical in each column but varying across the 

columns
19

. Both problems are solvable by GCLUSTER 

since our algorithm is based on the more general 

‗coherent‘ model. 

The benchmark set was generated by implanting bi-

cluster matrices into a larger background matrix. When 

implanting a bi-cluster matrix, the values of the bi-

cluster matrix were used to replace the value in the 

implanted location in the background matrix, 

maintaining the property that elements from the same 

row (and column) of the bi-cluster matrix are on the 

same row (and column) in the implanted matrix. Under 

‗constant‘ and ‗coherent‘ models, Prelic‘s benchmark 

can be used to compare the performance of bi-clustering 

algorithms considering the two scenarios: 1) matrices 

with varying levels of noise and 2) matrices with varying 

degrees of overlap among the bi-clusters in the same 

background matrix. The whole benchmark set comprises 

four sets of data.  

The sub-matrices were implanted into the 

background matrices whose values follow normal 

distributions with varying standard deviations σ – used 

to model the different level of ‗noise‘ (scenario 1) and 

the level of overlaps among the bi-clusters (scenario 2). 

In scenario 1, ten non-overlapping bi-clusters of size 

10(genes)×5(conditions) were implanted into 

background matrices of size 100×50 while the level of 

background noise (controlled by σ) range from 0 to 0.25 

for the ‗constant‘ model (Figure 1A) and 0 to 0.10 for 

the ‗coherent‘ model (Figure 1B). In scenario 2, the 

background noise parameter σ was 0, and the bi-clusters 

with size (10+d)×(10+d) were implanted into a 

(100+d)×(100+d) matrix at the interval of 10 genes and 

10 conditions, thereby forcing the bi-clusters to be 

overlapping with each other at different levels 

(controlled by d) for both the ‗constant‘ (Figure 1C) and 

‗coherent‘ (Figure 1D) models. Further details about 

construction of the benchmark sets can be found in 

reference
19

. 

For comparative studies between our algorithm and 

the previous ones, we did not include three earlier bi-

clustering algorithms, Cheng-Church method (CC)
5
, 

xMotif and OPSM in our study, because they were 

shown to have fairly low performance accuracy (below 

50%) in recovering implanted bi-clusters by previous 

studies
16, 19

. Three algorithms, BIMAX
19

, Iterative 

Signature Algorithm (ISA)
9
, and SAMBA

23
, achieved 

relatively good performance therefore we compared the 

performance of GCLUSTER with these methods. We 

used the BIMAX and ISA algorithms implemented in 

BICAT
3
 and the SAMBA algorithm implemented in 

EXPANDER
21

; both software packages are publicly 

available. In addition, we also included a recently 

published bi-clustering algorithm RMSBE based on 

mining maximum-similarity bi-clusters
16

. The 

parameters for running these bi-clustering algorithms 

were taken either from their default settings or following 

the parameters suggested by the original authors (see 

supplementary information on our website). Pre-

processing and post-processing were performed in a 

consistent manner with the previous benchmark study
19

. 

We first compared the bi-clustering results for 

scenario 1. Surprisingly, we found that the most recent 

method, RMSBE shows the poorest performance (at an 

accuracy level below 80%) among the five tested 

algorithms. This was also noted by Wu, et al.
25

 possibly 

because RMSBE is not appropriate for the situations 

where the noise levels within bi-clusters and the 

background are very similar. The other four algorithms 

except for BIMAX identified all the implanted bi-

clusters for the ‗constant‘ model, as shown in Figure 1A.  

From Figure 1B, for the ‗coherent‘ case, we can see that 

ISA has the best performance among the five programs 

while GCLUSTER consistently ranks the second after 

ISA. The performances of all these algorithms are 

reduced proportionally to the level of noise in the 

background matrix. In the test case with the most ‗noise‘ 

(σ=0.10, ‗coherent‘ model), the 90% accuracy by 

GCLUSTER is lower than 98% of ISA, but is better 

than both BIMAX and SAMBA with 84% and 80% 

accuracy, respectively.  Then we considered situations 

where there are overlapping clusters – scenario 2 

(Figure 1C, 1D). RMSBE continues to show relatively 

low accuracy in recovering the implanted bi-clusters 

compared to the other four programs. The performances 

of SAMBA and ISA are affected by the presence of 

overlapping bi-clusters. Specifically, as the overlap 

between bi-clusters increases, the performances of both  



 

 

 

    

programs drop substantially and the extent of the 

performance drop is correlated with the degree of 

overlap d. On the same datasets, neither GCLUSTER 

nor BIMAX is affected by the increasing degree of 

overlap as we see from the same figure that both 

methods have identified all the overlapping bi-clusters. 

Indeed, the ISA method, while performing very well in 

scenario 1, has the worst performance when bi-clusters 

overlap, in some cases (d=10, ‗coherent‘ model) 

suffering a 90% performance reduction compared to 

GCLUSTER/BIMAX. 

Overall on the Prelic datasets, we found that 

GCLUSTER has consistently performed in the best in 

the most general case. It appears that as though ISA has 

the marginal advantage (up to 8%) over GCLUSTER on 

the ‗noisy‘ case, its performance drops up to 90% when 

the bi-clusters overlap. 

      A.                                                                                            B.      

       

      C.                                                                                            D. 

      

Fig. 1. Comparison of recovery accuracy of GCLUSTER with four other bi-clustering algorithms on the Prelic benchmark [9]. The 

analysis reveals both the effects of increasing noise levels (scenario 1) for ‗constant‘ (A) and ‗coherent‘ (B) models and varying degrees of 

overlapping (scenario 2) for ‗constant‘ (C) and ‗coherent‘ (D) models. Note that the recovery score is calculated similarly to (Prelic, et al., 

2006) using 
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where Mopt is the set of implanted bi-clusters; M is the set of recovered bi-clusters; G stands for genes sets within the bi-cluster. 

 

 



 

3.2.   Tests on global transcriptional 

datasets 

We now compare and evaluate the aforementioned 

algorithms on global microarray data collected on two 

different organisms (E. coli and yeast). When analyzing 

the whole transcriptome microarray data, one 

challenging problem is to find the ―transcriptional 

modules‖, which represent modular components in the 

(global) gene regulatory network, defined as a set of 

tightly co-regulated genes along with a set of associated 

conditions that trigger the co-regulation
10

, making it a 

natural application problem for the bi-clustering 

methods. It is known that some transcriptional modules 

show co-regulations only under a narrow range of 

conditions and have weak global correlations among 

their gene expression patterns, therefore not easily 

detectable by the traditional clustering methods. In 

addition, some transcriptional modules may overlap due 

to the combinatorial regulation by multiple 

transcriptional factor
10

, which would also complicate the 

use of the traditional clustering techniques. The goal of 

this exercise is to test the effectiveness of the bi-

clustering algorithms in identifying such transcriptional 

modules.  

Our first test case includes the microarray gene 

expression data for 4217 E. coli genes collected under 

264 conditions from the M3D database (E. coli array 

version 4 build 3)
7
. The values in the original 

microarray dataset are log-2 values of the fluorescence 

intensities. As a pre-processing step, we centered these 

values by subtracting the median for each gene so that 

each entry was transformed to log-2 ratio with respect to 

the median intensity. We then transformed this 4217 × 

264 matrix to a simplified matrix with three distinct 

values, -1, 0, 1 as follows. For each column in the 

matrix, the values of the top 5 percentile of the most up-

regulated genes were converted to 1 (up-regulated) and 

the values of the 5 percentile of the most down-regulated 

genes were converted to -1 (down-regulated) and the 

rest were assigned 0 (unchanged). The goals of our 

analysis is to identify bi-clusters hidden in the 

microarray data, and study their relationships to 

biological pathways, as defined in terms of biological 

processes by the GO functional classification scheme
2
. 

In addition, we have also considered two other 

functional classification schemes, namely KEGG 

A                                                                                              B 

 
Fig. 2. Evaluation and comparison of different bi-clustering algorithms on E. coli and yeast microarray data.  (A) Proportions of E. coli 

bi-clusters that have significant overlap (p<0.01) with GO biological processes, KEGG pathways, and experimentally verified regulons.  (B) 

Proportions of yeast bi-clusters that are statistically enriched (p<0.01) in GO biological processes, KEGG pathway and MIPS functional 

catalog. 

 



 

pathways
11

 and experimentally validated regulons from 

the EcoCyc database 
12

.   

For each identified bi-cluster, we calculate the p-

value using Fisher‘s exact test as defined in GeneMerge 

program
4 

as follows: suppose we have a functional 

classification that partitions the total N genes into k 

classes C1, …, Ck. Let B be a bi-cluster of n genes, with 

nj genes belonging to class Cj. The p-value of B can be 

calculated as 
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which essentially measures the statistical significance of 

the functional enrichment by B‘s most dominating 

functional class of genes, i.e., genes in the same 

biological process. Clearly the smaller the p-value of a B 

is, the more likely that B‘s genes are from the same 

biological process. 

 We have run the five bi-clustering algorithms like 

before on this dataset. For each algorithm, we calculate 

the proportions of bi-clusters that have significant p-

values (below a pre-selected p-value cutoff) and 

compare these sub-matrices as a way to compare their 

performance. To facilitate better comparisons among the 

bi-clustering results from different algorithms, we 

applied a procedure following Prelic et al.
19

  to remove 

the substantially overlapped bi-clusters so that no two 

bi-clusters overlap more than 25% of their sizes. In 

addition, we restrain our comparisons to the 100 best 

scoring bi-clusters for each algorithm.  

Among the five tested algorithms, GCLUSTER 

consistently show the highest enrichment based on the 

three functional classifications, with BIMAX ranking 

the second after GCLUSTER on this dataset. 

Specifically, 99% of the GCLUSTER bi-clusters show 

substantial enrichment with GO biological processes,  

95% of the GCLUSTER results show significant overlap 

(p<0.01) with known regulons, and 68% enriched in 

KEGG pathways
11

, while the detailed comparisons with 

other programs are given in Figure 2A.  

As our second test, we used yeast (S. cerevisiae) 

microarray data. The test data is derived from a study of 

transcriptional responses of 2993 genes under 173 

different stress conditions
8
. This dataset has been used 

to validate bi-clustering algorithms in several previous 

studies
16, 19

. The data entries represent log-2 test-to-

reference ratios in the dual-channel chips, and are 

already normalized so there is no need for further pre-

processing. Similar to the E. coli data analysis, we 

evaluated each bi-cluster generated by different bi-

clustering algorithms in terms of functional enrichments 

based on GO biological processes, MIPS yeast 

functional catalog
20

 and KEGG pathways (Figure 2B). 

From Figure 2B, we can see that GCLUSTER has the 

highest functional enrichment among the five tested 

algorithms. 

Through the above comparative analyses on the 

performance of five bi-clustering algorithms on the two 

sets of microarray data, we have shown that 

GCLUSTER is capable of revealing high quality bi-

clusters in both prokaryotic and eukaryotic expression 

profiles, and the genes within the bi-clusters show good 

correlations with known functions and pathways. This 

study thus suggests the potential of extracting and 

applying the sub-structures in the global expression data 

when annotating metabolic pathways and regulatory 

networks. The combination of microarray-based bi-

clusters and empirical knowledge of shared functional 

groups or regulatory elements would allow for more 

accurate detection of transcriptional modules. 

 

 

 

 

 
 
Fig. 3. Visualization of three bi-clusters (BC000, BC002, BC054), 

which were selected based on the specificity to certain subtype of 

leukemia (ALL/MLL/AML).  The IDs shown to the right of the heat-

map are Affymetrix probe IDs. 

 



        

3.3.   Identifying signatures for cancer 

subtyping 

 

We now extend the application of our bi-clustering 

algorithm to the problem of cancer subtype 

classification. The basis of this analysis is that we expect 

that some pathways unique to each cancer subtype may 

get activated across the majority of the patients of this 

cancer subtype, and hence the activation of the genes in 

these pathways can be possibly used as a signature for 

cancer subtyping. By finding such activated gene groups 

for each cancer type, we can possibly do cancer 

classification based on their molecular signatures. 

Apparently this problem could be formulated as a bi-

clustering problem on microarray gene expression data. 

Actually, there have been several studies that used bi-

clustering as part of a larger analysis pipeline to do 

cancer subtyping
13

. 

We have used the leukemia data collected by 

Armstrong et al
1
 and searched for bi-clusters that might 

be characteristic of different leukemia subtypes (ALL, 

MLL and AML). This dataset consists of 12,533 probes 

from 72 patients of different subtypes of leukemia (44 

ALL, 20 MLL and 28 AML patients, respectively), 

which were produced on Affymetrix U95A oligo-

nucleotide arrays. We did the same pre-processing on 

the array data as we have done on the previous test case, 

and then carried out bi-clustering analyses on the 

transformed matrix consisting of three different values, -

1, 0, and 1 like before.  

Using GCLUSTER, we have identified a total of 

463 bi-clusters in the dataset (outputs available on our 

website). We made the following observations about the 

predicted bi-clusters: 5 bi-clusters contain samples from 

only one cancer subtype, 121 bi-clusters have samples 

from two subtypes and 338 bi-clusters from all three 

subtypes. Although only 5 bi-clusters were found to 

have specificity for a particular sub-type, these bi-

clusters are highly significant and distinct. Figure 3 

gives an example of three selected bi-clusters that each 

shows subtype-specificity (BC000, BC002, BC054; with 

p-values 6.3e-154, 7.2e-84, 5.5e-38 respectively). In this 

example, GCLUSTER identifies the classical ‗checker-

board‘ sub-structures inside the original microarray data, 

where the three selected bi-clusters each corresponds to 

a particular leukemia sub-type, with BC000 specific to 

ALL, BC054 specific to MLL and BC002 specific to 

AML. It remains interesting for future testing how the 

genes within these bi-clusters are related and how they 

establish the cancer sub-type as a unique entity.  

The bi-clusters that contain samples between two or 

more sub-types are probably clinically as informative as 

the subtype-specific bi-clusters. For example, we have 

found that among the resulting bi-clusters, a few bi-

clusters (e.g. BC005, BC006 etc.) show opposite trend 

for different ALL and AML. In particular within bi-

cluster BC005, samples from ALL patients are all up-

regulated while samples from AML patients are all 

down-regulated; BC006 show exactly the opposite 

pattern where ALL samples are down-regulated and 

AML samples are up-regulated. These bi-clusters would 

contain candidates of selectively expressed genes for 

needed molecular targets. Note that this was not possible 

using some other bi-clustering algorithms such as 

BIMAX, since BIMAX only deals with binary 

discretizations (change vs. no- change)
19

 as opposed to 

multi-class discretizations (up-regulated, no-change and 

down-regulated in our analysis).  

As result of bi-clustering on the cancer data, we 

have shown that GCLUSTER is capable of uncovering 

genes that uniquely characterize or differentiate specific 

clinical groups. Future work could be focused on 

refining the subtype-specific bi-clusters, based on which 

we can further integrate into more accurate supervised 

classification pipeline for cancer diagnostics and 

classification problems. 
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