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While full sibling group reconstruction from microsatellite data is a well studied problem, reconstruction of half
sibling groups is much less studied, theoretically challenging, and a computationally intense problem. In this paper,
we present two different formulations of the half-sib reconstruction problem and prove their NP-hardness. We also
present exact solutions for these formulations and develop heuristics. Using biological and synthetics data sets we
present experimental results and compare them with the leading alternative software COLONY. We show that our
results are computationally superior and allow half-sib group reconstruction in the presence of polygamy (unlike
COLONY), which is prevalent in nature.

1. INTRODUCTION

Several studies 1–6, including ours 7–12, have recently

developed computational approaches to reconstruct-

ing full-sibling groups in wild populations using ge-

netic markers such as microsatellites. Few methods

focus on half-sibling relationships. However, half-sib

reconstruction has many applications in the study of

plant and animal mating systems which are polyga-

mous or promiscuous and where cohorts of offspring

can be more easily sampled than the adult breed-

ers. Some methods study monogamous systems, but

there are others systems which are also prevalent

in nature, i.e. polyandry, polygyny, polygynandry,

which result in progeny arrays where half-sibs are

the norm. In this paper, we focus on the half-sibling

reconstruction problem using data from cohorts of

offspring rather than the breeders, since they are

usually easier to sample in wild populations. The

problem is not only harder to analyze theoretically, it

is also much more difficult to solve computationally.

Our main contributions in this paper are as follows:

1) we formally define the half-sibling reconstruction

problem and analyze its combinatorial properties; 2)

we present two new parsimony-based formulations

for the half-sibling reconstruction problem and show

that they are NP-complete; 3) we develop exact algo-

rithms for solving these hard combinatorial formula-

tions; 4) we test these methods using both biological

and simulated datasets and compare our reconstruc-

tion results to those obtained by the leading alterna-

tive approach COLONY3.

∗Corresponding author.



2. HALF-SIBLING

RECONSTRUCTION

Knowledge of the relatedness of individuals can be

used to assess fecundity and mating systems, study

kin selection, detect inbreeding, and to infer heri-

tability using quantitative genetics 13. While full

sibling relatedness is difficult to infer, half-sibling

relatedness constitutes a looser constraint on indi-

vidual groupings which carries a weaker information

signal and, thus, is even more difficult to reconstruct.

Furthermore, monogamy, which produces only full-

sibling groups, is relatively rare in nature. More com-

mon are polygamous and promiscuous mating sys-

tems where most offspring will be half-siblings (shar-

ing only one parent), or a combination of half-sib and

full-sib (sharing both parents) groups. Because of

the ubiquity of half-sib groups in nature, biologists

need robust approaches for inferring half-sibling re-

lationships from molecular marker data. For exam-

ple, plants have flowers pollinated from many differ-

ent plants, so seeds from a single plant are primarily

half-sibs. Identifying these half-sibs among seedlings

would allow researchers to study variation in female

reproductive success among plants.

In order to formally define the half-sib recon-

struction problem, we first establish some basic ter-

minology and describe the genetic markers.

2.1. Definitions

Half and Full Siblings: a group of individuals that

share both parents is referred to as full siblings, and

when they share at least one of the parents they are

referred to as half siblings. In the rest of the paper,

we use full-sibs and half-sibs terms to refer to these

groups, respectively.

Locus: the location of a gene on a chromosome.

Allele: one of the different versions of the same gene

found at the same locus but on homologous chromo-

somes or in different individuals.

Genetic marker: a segment of DNA that can be

scored to identify individual genotypes and track in-

heritance.

Diploid individual is one having two alleles (not nec-

essarily different) at each locus.

Homozygous (heterozygous) individual is one having

two identical (different) alleles at a particular genetic

locus.

Allele frequency: the fraction of all the alleles for a

gene in a population that are of a particular type.

Genotype: the actual alleles present in an individual;

the genetic makeup of an organism.

2.2. Microsatellite Markers

While there are several molecular markers used in

population genetics, microsatellites (also known as

SSRs, STRs, SSLPs, and VNTRs) are the most com-

monly used markers in population biology for non-

model organisms. Microsatellites are repeats of short

DNA sequences distributed throughout the genome.

These are co-dominant, unlinked, multi-allelic mark-

ers that offer numerous advantages for population

studies. Generally, phase or haplotype information

is not available for microsatellite loci in non-model

organisms.

2.3. Problem Statement

The main focus of our paper is to design a method

that accurately reconstructs half-sibling groups from

microsatellite data. Table 1 shows an example co-

hort with five individuals sampled at two loci. We

now formally define the problem of half-sibling re-

construction. Let U = {X1, . . .Xn}, where U is a

population of n diploid individuals of the same gen-

eration, and where each individual is represented by

a genetic (microsatellite) sample at l loci. That is,

Xi = (〈ai1, bi1〉, . . . , 〈ail, bil〉) and aij and bij are the

two alleles of the individual i at locus j represented

as some identifying string. The goal is to reconstruct

half-sib groups which is formulated as a cover of in-

dividuals by sets P1, . . . Pm where individuals in the

same set Pi share at least one parent. We assume no

knowledge of parental information.

What complicates the half-sib problem is the ex-

istence of multiple half-sib reconstructions for a given

cohort. Consider the cohort of individuals in Table

1(b). The full-sib reconstruction is clear and there

is only one correct answer. However, for the same

cohort, there are four different possible half-sib re-

constructions, as shown in Table 1(c). Each of these

reconstructions is biologically plausible, i.e. individ-

uals placed in a half -sib group share exactly one

parent. Every individual, and the full-sib group it



Table 1. Example of a cohort of five individuals sampled at two microsatellite loci with a unique full-sib and multiple
half-sib solutions.

(a) Sampled Data

Id Locus 1 Locus 2

1 7 8 19 20
2 7 10 20 46
3 5 6 19 23
4 4 5 15 19
5 2 10 15 19

(b) Full Sibs

Father Mother Offspring ids

P1 P2 1, 2
P1 P4 4, 5
P3 P2 7, 8
P3 P4 10, 11
P5 P6 13, 14
P5 P8 15, 16
P7 P6 17, 18
P7 P8 19, 20

(c) Biologically consistent half-sib reconstructions shown as
sets of ids of offspring

{{1, 2, 4, 5}, {7, 8, 10, 11}{13,14, 15, 16}{17,18, 19, 20}}
{{1, 2, 7, 8}, {4, 5, 10, 11}{13,14, 17, 18}{15,16, 19, 20}}
{{1, 2, 7, 8}, {4, 5, 10, 11}{13,14, 15, 16}{17,18, 19, 20}}
{{1, 2, 4, 5}, {7, 8, 10, 11}{13,14, 17, 18}{15,16, 19, 20}}

belongs to, is always in the intersection of two half-

sib groups.

2.4. Related Work

COLONY 3 is a widely used software for both full

and half-sibs reconstruction. However, it assumes

that one gender mates monogamously, an assump-

tion that may greatly limit the software’s utility.

COLONY, Almudevar et al. 4, 5, Herbinger el al. 14,

Wilson et al. 15, Thomas et al. 16 all use likelihood-

based approaches to reconstructing both full- and

half-sib groups. All of these approaches assume

knowledge or availability of population allele fre-

quencies or mating patterns in the given species.

3. MINIMUM HALF-SIB

RECONSTRUCTION

One way to interpret parsimony for half-sib recon-

struction is to find the minimum number of half-sib

groups necessary to explain the cohort. We will for-

mulate the problem and discuss its complexity and

an algorithmic solution. In order to do so we first

need to translate the Mendelian genetics laws that all

half-sibgroups must obey into a combinatorial con-

straint.

3.1. Half-Sibs Property

In Ref. 10 we presented two necessary combinatorial

properties that a full-sib group must satisfy: the 2-

ALLELE property and the 4-ALLELE property.

We now present a combinatorial property based on

Mendelian laws that a half-sib group must obey. This

is a necessary, yet not sufficient property for any fea-

sible half-sib group.

Half-Sibs Property: For any given half-sib

group, at every locus there exists a pair of alleles

xj , yj such that every individual in the group con-

tains (at least) one of the two alleles. Formally, a set

S ⊆ U has the Half-Sibs Property if

∀1 ≤ j ≤ l : ∃ Aj = {xj , yj}

s.t. ∀i ∈ S aij ∈ Aj ∨ bij ∈ Aj

Proof. Recall that a half-sib group is a cohort

that shares at least one parent. By Mendelian laws

of inheritance, if a group of individuals shares a par-

ent then they must inherit one of two alleles from the

parent at each locus. Thus, there must exist at each

locus a pair of alleles from which every individual

must inherit one.

This property is illustrated in Table 1: the

first four individuals can be members of a half-sib

group because the alleles {5, 7} at the first locus and

{19, 20} at the second locus satisfy the Half-Sibs

Property. Individual 5 cannot be added to this

half-sib group because there will be no set of two

alleles at the first locus which will cover all five indi-

viduals.

Notice that there is no limit on the actual num-

ber of different alleles in a half-sib group. The Half-

Sibs Property constraint is mathematically weak:

for any half-sib group that obeys this property a par-

ent can be constructed by using the two alleles at

every locus. Furthermore, any two individuals can

potentially be half-sibs. In practice, we may also re-



quire that any individual or full-sib group may be

part of at most two half-sib groups.

3.2. Min-Half-Sibsn,ℓ Problem

Definition

Input: A set U of n individuals, each with ℓ sam-

pled loci.

Notation: Let hi ⊆ U denote a set of individuals

which obey the Half-Sibs Property.

Valid Solutions: H = {h0, . . . , hm} s.t.

∪hi∈Hhi = U .

Objective: minimize |H|.

3.3. Computational Complexity

Theorem 3.1. Min-Half-Sibsn,ℓ is NP-hard.

Proof. We reduce from the Exact Cover

by 3-sets (X3C) problem. X3C is known to be

NP-complete 17 and is defined as follows: given

〈n, S1, S2, . . . , St〉, where n = 3q for some q ∈ Z
+

and S1, S2, . . . , St are a collection of 3-element sub-

sets of [n] = {1, 2, ..., n}, is there a collection of q

subsets from S1, S2, . . . , St such that their union is

[n]?

Given an instance 〈n, S1, S2, . . . , St〉 of X3C we

create an instance of Min-Half-Sibsn,ℓ. For every

j ∈ [n], there is an individual j′. We now describe the

gadgets necessary to ensure some structural proper-

ties.

Type I Gadgets: These gadgets ensure that no set

of four individuals can be half-sibs. There

are
(

n
4

)

= Θ(n4) such gadgets, each rep-

resenting a set of four elements ensuring

they cannot be half-sibs. Consider a set of

four elements a, b, c, d ∈ [n]. The gadget for

this set of individuals will disallow the in-

dividuals for these items {a′, b′, c′, d′} to be

half-sibs, but will allow any other combina-

tion. We insert a new locus i with six new

alleles 〈x1, x2, x3, x4, x5, x6〉 for these indi-

viduals: a′

i = {x1, x2}, b′i = {x3, x4}, c′i =

{x5, x2}, d′i = {x5, x6}, and e′i =

{x1, x5} ∀e ∈ U − {a, b, c, d}.

Type II Gadgets: These gadgets ensure that only

the valid sets can be half-sibs. There are
(

n
3

)

− t = Θ(n3) such gadgets, each rep-

resenting a set of three elements that is

not one of S1 . . . St. Suppose one such

set is {a, b, c}. The gadget for this set of

individuals will prohibit the corresponding

individuals {a′, b′, c′} to be half-sibs, but

all other combinations are allowed. We

insert a new locus i with six new alle-

les 〈x1, x2, x3, x4, x5, x6〉 for these individ-

uals: a′

i = {x1, x2}, b′i = {x3, x4}, c′i =

{x5, x6}, and e′i = {x1, x5} ∀e ∈ U −

{a, b, c}. This allows any set of size three,

other than {a, b, c}, to be half-sibs.

Type III Gadgets: These gadgets ensure that the

individuals are distinct. There are O(n2)

such gadgets, each gadget ensuring that a

pair of individuals is distinct, while allowing

any subset of individuals to be in a half-sib

group. Suppose one such pair of individu-

als is {a, b}. We insert a new locus i with

two new alleles 〈x1, x2〉 for these individu-

als: a′

i = {x1, x2}, b′i = {x1, x1}, and e′i =

{x2, x2} ∀e ∈ U −{a, b}. This ensures that

for a pair of individuals a′ and b′ are unique.

However, this locus does not prevent any

half-sib groups.

Using these gadgets, we can now reduce any in-

stance of the X3C problem to an instance of Min-

Half-Sibsn,ℓ, with ℓ =
(

n
4

)

+
(

n
3

)

− t + n2 = Θ(n4),

by generating a corresponding individual j′ for every

element j in X3C, ensuring that a minimum half-sibs

solution will automatically give us a solution to X3C.

3.4. Half-Sibs Min Set Cover Algorithm

We now present an exact algorithm to solve the Min

Half-Sibs problem. This algorithm is similar to the

2-Allele Min Set Cover algorithm we presented

in Ref. 10. It consists of two stages:

(1) Enumerate all maximal feasible half-sib sets S in

the cohort U that obey the Half-Sibs Prop-

erty.

(2) Find the minimum number of maximal feasible

sets C ⊆ S necessary to cover the entire cohort

U using the Minimum Set Cover.



3.4.1. Step 1: Half-Sibs Enumeration

Algorithm.

In order to generate all maximal half-sib groups we

exploit the fact that any two alleles at a locus rep-

resent a potential parent. We first generate all max-

imal feasible half-sib groups at each locus, and then

intersect them to find groups that are common across

loci. In order to generate maximal feasible half-sib

groups we treat every pair of alleles as the parental

genotype (for that locus) and then check which in-

dividuals inherit at least one allele from the pair of

alleles. We refer to Figure 2 for details.

Lemma 3.1. Algorithm Half-Sibs Enumeration

generates all maximal half-sib groups.

The proof is straight forward and we omit it for

brevity.

This algorithm implies an upper bound on

the number of half-sib groups in a given cohort:

O(
(

2n
2

)k
) = O(n2k). Compared to the full-sib recon-

struction problem, this tremendously increases the

size of the set cover problem. However we are able

to execute this algorithm on most of the test data

sets. For larger data sets it is possible to prune the

sets of individuals at each locus by discarding non-

maximal sets.

3.4.2. Step 2: Min Set Cover.

The minimum set cover problem is a classical NP-

complete 18 problem and is defined as follows: given

a universe U of elements X1, . . . , Xn and a collection

of subsets S of U , the goal is to find the minimum

collection of subsets C ⊆ S whose union is the entire

universe U .

We use the standard integer linear program for-

mulation of the Minimum Set Cover problem to

solve it to optimality using commercial ILP solver

CPLEXa.

4. MINIMUM FULL-SIB/HALF-SIB

RECONSTRUCTION

Another way to interpret the parsimony objective for

the half-sib reconstruction problem is to find a recon-

struction that minimizes the number of both full- and

half-sib groups. We implement this approach by first

finding the minimum number of full-sib groups nec-

essary to explain the population using the 2-Allele

Min Set Cover 10 and then merging the full-sib

groups to obtain the minimum half-sib groups that

cover the population and are composed of full-sib

groups. Note, that a reverse Half-Sib to Full-Sib

parsimony approach may benefit full-sibling recon-

struction, but it is beyond the scope of this paper.

4.1. Half-sibs From full-sibs

In order to determine the minimum number of half-

sibs based on a full-sibs solution we must explore all

possible half-sib groups that can be generated from

the given full-sibs. The algorithm works in three

steps similar to the algorithm presented above.

(1) Generate a full-sib reconstruction F using the

2-Allele Min Set Cover algorithm.

(2) Enumerate all maximal feasible half-sib sets S

in the cohort U that obey the Half-Sibs Prop-

ertyand can be obtained by merging a subset of

the input full-sib groups F . We start by gener-

ating candidate half-sib groups by using all pairs

of full-sib groups and then comparing all full-sib

groups to all candidate half-sib groups to see if

they can be merged conforming to the Half-

Sibs Property.

(3) Find the minimum number of maximal feasible

sets C ⊆ S necessary to cover the entire cohort

U using the Minimum Set Cover.

5. VALIDATION METHODOLOGY

5.1. Datasets

To validate and assess the accuracy of our approach,

we have used datasets with known genetics and ge-

nealogy. However, such biological datasets contain-

ing no errors are few and we were able to obtain only

two. Therefore, we test on both biological and sim-

ulated datasets.

Biological Datasets

We test our approach on datasets where offspring

were collected and genotyped at several microsatel-

aCPLEX is a registered trademark of ILOG



input : U : individuals

output: H: Set of Maximal Half-sib groups

HalfSibs← {U} ;

foreach locus l do

HalfSibs[l]← ∅ ;

Alleles[l]← {a|allele a appears at locusl} ;

foreach a ∈ Alleles[l] do

AlleleSets[l][a]← {Ix| Individual with allele a at locus l} ;

end

foreach a1, a2 ∈ Alleles[l] do

halfsiba1,a2
← AlleleSets[l][a1] ∪AlleleSets[l][a2];

HalfSibs[l]← HalfSibs[l] ∪ {halfsiba1,a2
} ;

end

HalfSibs← IntersectGroups(Halfsibs, Halfsibs[l]);

end

Fig. 1. Algorithm for generating all maximal feasible half-sib groups.

input : S1, S2 sets of individuals

output: S sets in common

S ← ∅;

foreach s ∈ S1 do

foreach t ∈ S2 do

S ← S ∪ {s ∩ t} ;

end

end

Fig. 2. IntersectGroups: Algorithm for intersecting sets.

lite loci. Half-sib groups were known because the

offspring were collected from individual gravid fe-

males, and were thus maternally related half-sibs.

As discussed above, there may be multiple correct

solutions, but these datasets typically are based on

configurations where the ratio of the number of fa-

thers to the number of mothers is high, which, as we

found, aids tractability of the problem.

Crickets: The field cricket Grillus bimaculatus

dataset comes from a population of crickets stud-

ied in Spain 19. It consists of 112 individuals

from 7 wild-caught gravid females with 6 sam-

pled loci.

Rockfish Larvae: The kelp rockfish Sebastes

atrovirens dataset 20 consists of 672 larvae from

7 broods and 7 sampled loci. A subset consist-

ing of 288 larvae from the first 3 broods was used

due to computational inefficiencies.

Simulated Datasets

To validate our approach using simulated data, we

follow the same protocol as in Ref. 8. We first cre-

ate random diploid parents and then generate com-

plete genetic data for offspring varying the number

of males, females, alleles, loci, number of offspring

and juveniles. For a given number of females, males,

loci, and a number of alleles per locus, we generate

a set of diploid parents with independent identical

uniform distribution of alleles in each locus. A male

and a female are chosen independently, randomly,

and uniformly from the parent population. For these

parents, a specified number of offspring is generated.

Each offspring randomly receives one allele each from

its mother and father at each locus. While this is a

rather simplistic approach, it is consistent with the



input : U : set of individuals, F : set of full-sib groups

output: H set of feasible half-sib groups

H ← F ;

merging ← true;

while merging do

foreach Si ∈ H do

foreach Sj ∈ F do
Si,j ← Si ∪ Sj ;

if Si,j obeys Half-Sibs Property ∧Si,j 6∈ H then
merging ← true ;

H ← H ∪ {Si,j} ;

end

end

end

end

Fig. 3. Algorithm for determining Minimum Half-sibs from full-sibs

genetics of known parents and provides a baseline for

the accuracy of the algorithm since biological data

are generally not random and uniform.

The simulated datasets were generated to show

the effects of a degree of disproportion between the

number of mothers and fathers in the breeding pairs.

We used the following ratios of the number of fa-

thers to the number of mothersb: 1:10, 1:5, 1:3, 1:1.

The half-sib groups based on the sex with the smaller

number of breeding adults were chosen as the ground

truth, i.e. paternal groups. We generated 10 cohorts

for each set of parameters.

5.2. Accuracy

There is no well-accepted measure of comparing

half-sibships. Moreover, as discussed above, the

task is complicated by the fact that some half-sib

groups may overlap multiple times and it is not clear

whether the overlap should be penalized. The ab-

sence of paternal information implies that we cannot

be sure that some half-sib groups given by the algo-

rithm are not representative of the half-sib groups by

other sex. We measure the error rates of algorithms

using a slight modification of the Gusfield Partition

Distance 21. For the cases where overlap occurs we

assume that the right assignment was made as long

as one of the overlapping assignments is correct. For

biological datasets we also report the overlap in ad-

dition to this score.

6. RESULTS

6.1. Biological Datasets

Crickets

Our Min Half-Sibs approach gives good results, the

only difference with the ground truth is that two of

the elements are assigned to more than one half-sib

groups. The Min-Full-Sib/Half-Sib solution classi-

fies 20

111
elements incorrectly. COLONY produces an

accurate result. See Table 2 for details. Note that

COLONY does not allow overlap between half-sib

groups because it assumes that one of the sexes is

monogamous.

Rockfish Larvae Subset

All three approaches: Min-Half-Sibs, Min Full-

Sib/Half-Sib and COLONY produces 100% accurate

assignments. See Table 3 for details. Only Min-Half-

Sibs produces an overlap of 4

288
individuals.

6.2. Simulated Datasets

As expected, the ratio of the numbers of fathers to

the number of mothers is the major factor in the

bThe genders are symmetric and the results hold for a high ratio of fathers to mothers



Table 2. Half sibling groups obtained for Crickets using four different methods (n = 112).

(a) Original

Set(1): 0 – 15
Set(2): 16 – 31
Set(3): 32 – 47
Set(4): 48 – 63
Set(5): 64 – 79
Set(6): 80 – 95
Set(7): 96 – 111

(b) Min Half Sibs

Set(1): 0 – 15
Set(2): 16 – 31 110

Set(3): 32 – 47
Set(4): 48 – 63
Set(5): 64 – 79
Set(6): 80 – 95
Set(7): 73 96 – 111

(c) Min Full-Sib/Half-Sibs

Set(1): 0 – 15 33
Set(2): 13 32 34 73 80 96 109
Set(3): 16 – 31 80 81 82 – 85 87 89 90 – 95
Set(4): 35 – 47
Set(5): 48– 63
Set(6): 64 – 72 74 – 79
Set(7): 80 81 86 88 89 96 – 111

(d) COLONY

Set(1): 0 – 15
Set(2): 16 – 31
Set(3): 32 – 47
Set(4): 48 – 63
Set(5): 64 – 79
Set(6): 80 – 95
Set(7): 96 – 111

Table 3. Half sibling groups obtained by four different methods from a Rockfish Larva Subset
(n=288)

(a) Original

Set(1): 0 – 95
Set(2) 96 – 191
Set(3) 192 – 287

(b) Min Half Sibs

Set(1): 0 – 95 125

Set(2) 96 – 191
Set(3) 111 147 182 192 – 287

(c) Min-Full-Sibs/
Half Sibs

Set(1): 0 – 95
Set(2) 96 – 191
Set(3) 192 – 287

(d) COLONY

Set(1): 0 – 95
Set(2) 96 – 191
Set(3) 192 – 287

accuracy of reconstruction. When the number of fa-

thers and mothers are comparable, it is possible to

pick many alternative parsimony-based reconstruc-

tions, thus the accuracy was low for such scenarios.

We were only able to compare our results to those

of COLONY on datasets where the monogamy as-

sumption is not violated, that is the number of the

fathers is very small compared to the mothers. Ta-

ble 4 presents the results of the reconstruction of the

three methods.

7. CONCLUSIONS

We have developed new intuitive formulations for re-

constructing half-sib relationships from microsatel-

lite markers. We make no assumptions about the

data or mating patterns other than parsimony. We

have also discussed the complexity of the proposed

formulations and provided exact algorithms to solve

these. Unfortunately, the resulting optimization

problems are NP-Hard and the approaches are com-

putationally intense in practice.

The Min-Half-Sibs method correctly reported

all the half-sib groups. While the Min Full-

Sibs/Half-Sibs approach was not very accurate, it

is more efficient as it explores a much smaller space

of solutions. Unlike the leading alternative software

COLONY, our methods allow for both maternal and

paternal half-sibs, which are possible and likely in

many natural systems.

As discussed in Ref. 10, for wild and endangered

populations parsimony seems to be the only assump-

tion we can make since any judgments about allele

frequencies, mating patterns, and family sizes may

be invalid. We argue that our methodology is supe-

rior as it gives accurate results without the assump-

tions made by other methods.

7.1. Future Work

Clearly, the proposed approaches, including

COLONY, are not computationally scalable in prac-

tice. However, our work lays the foundation for

understanding the computational structure of the

half-sib problem. We consider our methods as a

starting point for developing viable practical solu-

tions for half-sibship reconstruction.

In the future, we intend to extend this work to

handle data with genotyping errors using consensus

methods, similar to our previous work for full-sibs11.

Furthermore, we will explore the reconstruction of

full-sibling relationships from the paternal and ma-

ternal half-sibling groups using the Min-Half-Sibs to

obtain the required half-sib groups.
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