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Serial Analysis of Gene Expression (SAGE) is a technology for quantifying gene expression using sequencing of short
stretches (tags) of DNA that are produced by reverse transcription and enzymatic restriction. A major issue in SAGE
data analysis is ambiguity of tags, i.e., single tags matching multiple genes and single genes matching multiple tags.
The ambiguity produces groups of interrelated quantitative constraints among tag counts and gene expression values.
We propose to solve the web of relations between tags and genes using nonnegative least square (NNLS) method. In
this paper we present a fast algorithm to do this task. The effectiveness of the method is confirmed by examining a
published data that involves SAGE and a method called GLGI. The method is then applied to a SAGE data for a
human neurodegenerative disease. The experimental results show that more reliable gene expression can be inferred
from SAGE tags using our method, suggesting that our method is powerful for exploring gene expression patterns
and identifying candidate genes from SAGE data that potentially contribute to the susceptibility of human complex
disease.

1. INTRODUCTION

Gene expression profiling is widely used for exploring

genome-wide gene activity patterns 1–3. Microarrays

and Serial Analysis of Gene Expression (SAGE) are

two major techniques used for surveying gene expres-

sion profile. Microarrays measure gene expression

levels by using probe-target hybridization 2, 3, where

a probe is a short stretch of DNA, often derived from

the sequence of a gene, and a target is a cDNA sam-

ple that is expected to represent the complete gene

activity in a cell. The SAGE, in contrast, obtains

gene expression by counting thousands of polyadeny-

lated transcripts by sequencing concatemers of short

sequence tags (10bp or 17bp long) derived from bio-

logical samples 4. Both microarrays and SAGE have

been used in biological research for many years for

measuring the expression of a large number, if not all,

of the genes in a given sample. There are some ad-

vantages of using SAGE over the other 5, 6. First, the

quantification in SAGE is based on the actual RNA

sequences expressed in the sample and thus, unlike

microarrays, one does not need to know beforehand

the sequence to be measured. This enables one to

discover unknown genes. Second, SAGE is able to

detect small changes in expression levels, making it

more sensitive comparing to microarray 7. Finally,

SAGE can detect over- and under-expressed tran-

scripts equally well. This means it has less biases

than microarray 8.

Despite these advantages, one big challenge ex-

ists in SAGE data analysis — to estimate gene ex-

pression values from SAGE tag counts. Due to tech-

nical limitations, the current SAGE technique can

detect transcript segments (tags) of 10bp or 17bp

long only. Even 17bp tags are not long enough to

uniquely represents a gene. That is, for many a tag

more than one candidate gene exists whose cDNA

corresponds to it, and for many a gene more than

one tag is identified that matches it. One crucial

step in analyzing SAGE data is production of the

so-called Tag-to-Gene assignments, which is to anno-

tate tags with original genes they come from. This



is carried out by comparing the tags to a database

of virtual tags extracted from known transcript se-

quences. When single tag matches multiple genes

or single gene matches multiple tags, the problem of

ambiguity occurs. Most current research only focuses

on those tags that can be uniquely mapped to genes

and ignores many tags with ambiguous mapping. Al-

though this strategy has been standardly used, much

information is undoubtedly lost by its stringent re-

striction. We in this paper answer how to remove

this restriction and make good use of all the tags.

The reference database plays a key role

in the Tag-to-Gene assignment step. Because

of high degree of redundancies among tran-

script sequences, it is difficult to use the se-

quences in transcript sequence databases directly

for SAGE tag annotation. The UniGene project

(http://www.ncbi.nlm.nih.gov/UniGene) is an

experimental system for automatically partitioning

GenBank transcript sequences (e.g., proteins, well-

characterized mRNA/cDNA sequences and ESTs)

into a non-redundant set of gene-oriented clusters.

Each UniGene cluster fundamentally contains a set

of transcript sequences which appear to come from

the same transcription locus, and therefore poten-

tially represents a unique transcript. The SAGEmap

data repository is constructed so as to make a

SAGE tag mapped to genes using UniGene clus-

ter identifiers 9. The construction process of the

tag to UniGene cluster assignments (tag-UniGene

assignments) itself is an automated process con-

sisting of multiple computational steps. The re-

sult of this process is a “full” tag to gene mapping

called “SAGEmap full” which includes the whole ex-

tracted virtual SAGE tags. Also, “SAGEmap reli-

able” is constructed by using SAGE tags extracted

from high-quality sequences in “SAGEmap full”. Al-

though “SAGEmap reliable” provides more reliable

information for SAGE annotation, the scope of tran-

scriptomes that “SAGEmap reliable” covers is much

less than that of “SAGEmap full.” SAGEmap pro-

vides an automatic link between gene names and

SAGE transcript levels, accounting for alternative

transcriptions and many potential errors. SAGEmap

is powerful, but there are additional ways of process-

ing and presenting this valuable data. SAGE Genie,

a set of tools for processing SAGE data, is then de-

veloped 10. The foremost of these tools is the SAGE

Anatomic Viewer, which allows nearly any gene’s

transcript level to be easily viewed in normal and

malignant tissues.

All this tremendous amount of development ef-

fort notwithstanding, SAGE data is still noisy. The

noise in SAGE data largely comes from two sources:

sequencing errors and Tag-to-Gene mapping ambi-

guity. As to the former, it is conjectured that the

unmapped tags could largely result from an accumu-

lation of sequencing errors 6. Considering that many

steps are involved in SAGE tag collection, and in

particular the errors introduced by single-pass DNA

sequencing, many SAGE tags are expected to con-

tain base errors and thus cannot be reliably mapped

to their known transcripts. This problem is particu-

larly serious for SAGE tags with lower copy numbers.

Therefore, it was suggested to eliminate unmapped

tags from further analysis. However, we argue that

even for tags that are mapped to genes, sequenc-

ing errors still exist. This issue unfortunately has

not received much attention 6. As to the latter, the

problem is that some genes mapped to a tag may

not be the true gene origins for that tag because

the length of SAGE tags is limited and transcript

sequences that appear in SAGE reference databases

are highly heterogeneous.

Attempts have been made to resolve these is-

sues. “Long SAGE” attempts to reduce the noise

caused by redundancies by extending the capability

of original SAGE by sequencing extra 7 base pairs,

which allows a high percentage of long SAGE tags to

be mapped directly to genomic sequence data 11–13.

Other attempts using computational and experimen-

tal approaches have been made for solving this prob-

lem 14–16. Ge et al. used microarray expression data

from different tissue types to define contexts of gene

expression and to predict the original transcript con-

tributing a ambiguous tag 14. Chen et al. identified

the correct genes for SAGE tags by extending the

SAGE tags into 3′ complementary DNAs (cDNAs)

using of the GLGI technique (generation of longer

cDNA fragments from SAGE tags for gene identifi-

cation) 15. Griffitha et al. performed global coex-

pression analysis by assessing and integrating pub-

licly available SAGE, cDNA microarray, and oligonu-

cleotide microarray expression data 16.

In this paper, we propose to use NonNegative

Least Squares (NNLS) methods to analyze SAGE



data. Our goal is to predict gene expression lev-

els from tag counts using Tag-to-Gene assignments

information as much as possible and address noise

problems in the meantime. This is obtained using the

information of interrelated quantitative constraints

among tag counts and gene expression values.

2. METHODS

In this section, we first introduce the basic concepts

behind our NNLS method and its link to SAGE data

analysis. Then, we present an improved algorithm to

solve the NNLS problem.

2.1. NNLS problem and its link to

SAGE data analysis

The NNLS problem refers to the problem of finding,

given an n × m nonnegative matrix A = (aij) and a

nonnegative n-dimensional vector b = (bi), a nonneg-

ative m-dimensional vector x = (xi) that minimizes

the functional f(x) = 1

2
‖Ax − b‖2, i.e.,

min
x

f(x) =
1

2
‖Ax − b‖2

=
1

2

n∑

i=1

(ai1x1 + · · · + aimxm − bi)
2,

subject to x ≥ 0.

The problem of estimating gene expression levels

from the tag counts of SAGE data can be formu-

lated as a NNLS problem. Suppose there are n tags

that appear in the data and there are m genes that

at least one of the tags matches. Let A be a binary

(i.e., 0/1) n×m matrix so that for all rows i and for

all columns j the (i, j) entry of the matrix, aij , is 1

if and only if the i-th tag mapped to the j-th gene,

and 0 otherwise. Let b be an n-dimensional positive

vector such that for all i the i-th entry of b, bi, is

the count of tag i in the SAGE data. Let x be the

m-dimensional vector of unknowns such that for all

j the j-th entry of x, xj , represents the expression

of the j-th gene. Our problem is then to estimate

vector x in terms of the NNLS problem.

The n×m nonnegative matrix A can be viewed

as the connectivity matrix of the bipartite graph G

over n tags and m genes, where tag i and gene j are

connected by an edge if tag i matches gene j. Nor-

mally, A is of high dimension with over ten thousand

tags and genes. This makes the computation of a

solution to the NNLS problem very time-consuming.

One way to reduce the dimensionality is to divide the

bipartite graph G into connected components and

then solve the NNLS problem on each individual con-

nected components represented, since solutions for a

connected component do not interfere with those for

another component. As illustrated in Figure 1, the

original matrix A is a 8 × 10 matrix. After graph

partition, matrix A is divide into two matrices with

dimensionality 4 × 7 and 4 × 3, respectively.

Fig. 1. An example showing the bipartite graph over a set
of tags and a set of genes. The vertices on the left-hand side
represent a set of tags and the vertices on the right-hand side
represent a set of genes.

The advantages of formulating the assignments

of ambiguous SAGE tags to genes as an NNLS prob-

lem are two-fold. First, the new formulation en-

ables us to perform more comprehensive transcrip-

tome analysis since ambiguous tags are used in the

analysis in a meaningful manner. Second, with this

new formulation it is possible to improve the accu-

racy and reliability in SAGE data analysis. Because

the new formulation takes a full account of the inven-

tory of tages that are expressed and their mapping

to genes. The expression level of a gene is estimated

based not just on unique sequence tags, but on all

sequence tags it links to. The contribution of tags

that have sequence errors to the prediction of gene

expression level is thus diminished.



2.2. Algorithm for solving NNLS

problem

The standard method (also known as the first

method) for solving NNLS is proposed by Lawson

et al. 17. The method uses an iterative procedure

that repeatedly identifies the dimension along which

the gradient of ‖Ax−b‖2 is the smallest. This greedy

method is fast but does not necessary produce close-

to-optimal solutions. To overcome this issue the

Project Gradient Method is devised 18, where instead

of a single dimension, a projection along which the

gradient is the smallest. A variant of this approach

has been recently proposed 19, where the amount of

changes along the projected dimension exhibits be-

havior similar to the Newton method. The full im-

plementation of this unfortunately requires the use

of non-sparse m × m scaling matrix that is updated

at every iteration. Since m is in the order of tens of

thousands in our case, the full-fledged version of the

algorithm is impractical. We thus modify the algo-

rithm so that a fixed scaling matrix (e.g., the identity

scaling) is used.

In the following for an n-dimensional vector x,

∇f(x) denotes the m-dimensional vector A(Ax − b)

and P (x) denotes the vector constructed from x by

setting all negative entries to 0. We set the initial

value of x to the n-dimensional 0-vector. Then re-

peat the following loop until a forced convergence

condition is reached (the improvement in ‖Ax − b‖2

is smaller than a pre-determined threshold).

(1) Set I to the set of all indices between 1 and n

such that the i-th entry of x is 0 and the i-th

entry of ∇f(x) is positive. Set J to the set of all

indices between 1 and n that are not in I.

(2) Decompose x as y + z, where y is the x with all

the entries at positions in I set to 0 and z is the

x with all the entries at positions in J set to 0.

(3) Repeat Compute two quantities α and β:

(a) Set Ā to the matrix constructed from A by

setting 0 all the columns and rows whose in-

dices are in I. For an n-dimensional vector u,

let g(u) = 1

2
‖Āu − b‖2.

(b) Compute the smallest nonnegative integer µ

that satisfies

g(y) − g(P (y − (1/2)µ−1)

≥
1

4
(Ā − b)T ĀT (y − P (y − (1/2)µ−1g(y)))

(c) Set β to (1/2)µ−1) and v to P (y −

(1/2)µ−1g(y)).

(d) Set α to the argmin of g((1 − α)y + αv. If

α > 1, set α to 1.

(4) Set w to P (y − β∇f(y)).

(5) Set ỹ to α(w − y).

(6) Set x to ỹ + z.

3. EXPERIMENTAL RESULTS

3.1. Data sets

The virtual SAGE tags with assigned UniGene clus-

ters were downloaded from the SAGEmap database

(ftp://ftp.ncbi.nlm.nih.gov/pub/sage/mappin-gs).

The NNLS method was performed on two sets of

data: the human CD34+ hematopoietic cell SAGE

library (http://www.ncbi.nlm.nih.gov/projects/

geo/query/acc.cgi?acc=GSE2346) 20 and the

SAGE libraries of hippocampus samples in

Alzheimer’s disease (http://www.ncbi.nlm.nih.gov

/projects/geo/query/acc.cgi?acc=GSM154136)
21. For each SAGE library, a bipartite graph was

generated using the experimental tags of the li-

brary and the Tag-to-Gene assignment indicated

by “SAGEmap full”.

3.2. Algorithm performance

Many real world networks are scale-free, that is, the

degree distribution follows a power-law. One prop-

erty of scale-free network is that the clustering co-

efficient is high — the network tends to be highly

locally-connected. This is also true for the net-

work formed by the tags and UniGenes. For exam-

ple, the SAGE libraries of hippocampus samples in

Alzheimer’s disease produce a very large connected

component (20K+ × 40K+) and this connected com-

ponent slows down the calculation. It is thus neces-

sary to break down such huge component into sev-

eral smaller connected components using graph par-

titioning algorithm. In such graph partitioning, the

input graph is divided into components by removal of

edges. In our case the removal of an edge corresponds

to the elimination of the information contained in the

link between a tag and its matching UniGene. Break-

ing down the input graph into components might

thus be harmful. We tested the NNLS algorithm per-

formance on different partitions generated by METIS



graph partition packages 22 for the aforementioned

large connected component. The algorithm perfor-

mance is measured by the mean squared error (MSE)

of the tag counts. As shown in Figure 2, the algo-

rithm performance does not change much when the

number of partitions increases (bottom panel), while

the running time is dramatically reduced when the

number of partitions is 500 and above (top panel).

This suggests that, whenever necessary, it is suitable

to execute partition before employing NNLS calcu-

lation.

Fig. 2. NNLS performance on graph decomposition.

3.3. Evaluation using SAGE data of

hematopoietic cells

3.3.1. Evaluation of NNLS method

The accuracy of NNLS method was evaluated us-

ing SAGE data from CD34+ hematopoietic cells.

Zhou et al. analyzed the pattern of gene expres-

sion in human primary CD34+ stem/progenitor cells

using SAGE approach 20. Among 21,546 tags that

matched known expressed sequences, 34% matched

more than one UniGenes. Zhou et al. employed a

method called GLGI to convert the tags that have

multiple matching genes into 3′-ESTs and then used

these longer sequences to search in databases their

corresponding genes 15. This is a wet-lab strategy to

annotate tags that have multiple gene matches.

We employed our NNLS method on CD34+

SAGE data and compared the results against the

results published in the paper by Zhou et al. 20. Be-

cause the SAGE tags with multiple matches tend to

be the ones with more copies, we compared the re-

sults for tags with more than 50 copies that have

multiple matches. There are 98 tags fall into this

category. After the GLGI annotation, many tags in

this category are found to come from housekeeping

genes and from genes with unknown functions, in-

cluding 40 ribosomal proteins, 2 hypothetical genes,

and 23 ESTs. We focused on comparing our results

with those genes that have specific functions, which

consist of 19 tags as shown in Table 1. For each

tag, the UniGenes it matches are ranked in the de-

creased order of their estimated gene expression val-

ues, and are then compared against the annotation

by the GLGI method. The top annotations of thir-

teen tags by the NNLS method are confirmed by the

GLGI method. When the top two UniGene clusters

are included, five more annotations are confirmed,

which represent 95% total of the tags that are com-

pared (Table 1).

3.3.2. Annotations of function unknown

tags

Note that all the tags in Table 1 have more than

one matching UniGene clusters. Each of those Uni-

Gene clusters in turn has multiple matching tags,

thus form a complicated tag-gene network. Table 1

shows that the top UniGene cluster assigned to each

ambiguous tag is likely to be the true gene origin.

Considering that there are many tags mapped to

ESTs without known function when the work of Zhou

et al. was published, it is possible to assign Uni-

Gene clusters to those tags using our NNLS method

and the new version of “SAGEmap full” Tag-to-Gene

assignments, as UniGene builds are constantly up-

dated. Table 2 shows some examples of these new

cluster asignments. These UniGene clusters are in-

volved in basic cellular activity such as ribosomal

proteins. The observations are consistent with the

knowledge that many housekeeping genes are highly

expressed in CD34+ cells. In addition, some tags

are assigned with specified functions with high ex-

pression level, indicating their potential important

role for hematopoiesis.



Table 1. Evaluation of the NNLS method.

SAGE tag Count # of UniGenea # of Tagb UniGenec UniGened Gene Symbole Rankf

TGTGTTGAGA 1711 6 8 Hs.181165 Hs.644639 EEF1A1 1
GTGAAACCCT 239 155 2 Hs.184376 Hs.539304 SNAP23 0
CCAGAGAACT 165 3 15 Hs.6975 Hs.642877 MALAT1 2
TAGGTTGTCT 148 3 8 Hs.279860 Hs.374596 TPT1 1
ATTGTTTATG 127 8 2 Hs.181163 Hs.181163 HMGN2 1
GCTCCCCTTT 126 2 6 Hs.1817 Hs.458272 MPO 2
TGTAATCAAT 117 3 5 Hs.249495 Hs.546261 HNRNPA1 2
TCACAAGCAA 109 3 5 Hs.32916 Hs.505735 NACA 1
GGGCATCTCT 102 2 2 Hs.76807 Hs.520048 HLA-DRA 1
CTCATAGCAG 84 2 8 Hs.279860 Hs.374596 TPT1 1
AAAAGAAACT 76 2 9 Hs.172182 Hs.387804 PABPC1 1
GCTTTATTTG 75 5 4 Hs.288061 Hs.520640 ACTB 1
GCCTTCCAAT 74 2 4 Hs.76053 Hs.279806 DDX5 1
TACCATCAAT 72 4 1 Hs.169476 Hs.544577 GAPDH 1
GCATTTAAAT 64 5 2 Hs.275959 Hs.421608 EEF1B2 1
GTCTGGGGCT 63 5 2 Hs.75725 Hs.517168 TAGLN2 2
TCTGCTAAAG 58 5 2 Hs.274472 Hs.593339 HMGB1 1
GTTCCCTGGC 55 4 2 Hs.177415 Hs.387208 FAU 1
CCTAGCTGGA 50 7 6 Hs.182937 Hs.356331 PPIA 2

a Number of UniGenes matching SAGE tag in column 1.
b Number of SAGE tags matching UniGene as shown in column 7.
c UniGene ID in the paper of Zhou et al. 20 verified by GLGI method.
d UniGene ID extracted from SAGEmap build #218 and ranked as top candidate by NNLS method.
e Gene Symbol corresponding to UniGene as shown in column 5 or column 6. Because the UniGene database is
updated constantly, although the identifiers in column 5 and column 6 are different, they refer to as the same
gene symbol.
f The rank of gene as shown in column 7. The ranking is obtained based on the decreased order of gene expression
values estimated by NNLS method for all the UniGenes the corresponding tag matches. 0: the gene has no
ranking; 1: the gene ranked top 1; 2: the gene ranked second.

3.4. Results of SAGE data of human

brain samples

The results in Section 3.3.2 demonstrate the effec-

tiveness of NNLS method for SAGE data analy-

sis. The NNLS method was then applied to another

SAGE library — SAGE library of human Alzheimer’s

disease.

APOE4 allele is a major risk factor for late-onset

Alzheimer’s disease (AD). However, the mechanism

of action of APOE in AD remains unclear. Xu et

al. studied the effects of APOE alleles on gene ex-

pression in AD by analyzing SAGE data obtained

from human hippocampus samples with AD patients

with APOE3/3, APOE3/4, and APOE4/4 alleles

and samples from a control 21. We re-analyzed this

SAGE data set using our NNLS method with the

goal of finding new genes that contribute to the sus-

ceptibility of Alzheimer’s disease.

3.5. Differentially expressed genes in

AD

Xu et al. used Chi-square Test and Fisher’s Exact

Test to examine the difference in tag counts between

two samples 21. We performed the same statisti-

cal analysis but on the expression values obtained

from NNLS method. Table 3 summarizes the re-

sults from the comparison of two studies. Xu et al.

found that gene expression patterns in the hippocam-

pus tissues of APOE3/4 and APOE4/4 AD patients

differ substantially from those of APOE3/3 AD pa-

tients. APOE3/4 and APOE4/4 allele expressions

may activate similar genes or gene pools with associ-

ated functions. Our results show similar expression

patterns and confirm the conclusions in the study of

Xu et al.21. Actually, for each sample, almost one

half of the significant UniGenes found by our NNLS

method overlap with the discoveries by Xu et al. 21.



Table 2. Annotations for tags with unknown function.

SAGE tag/UniGene Count Symbol & Description

CCTGTAATCC 516 Hypothetical protein
Hs.433701 57 RPL37A Ribosomal protein L37a
Hs.527193 26 RPS23 Ribosomal protein S23
Hs.489190 13 SLC25A13 Solute carrier family 25, member 13 (citrin)

GTGAAACCCC 471 EST
Hs.477789 11 ATP1B3 ATPase, Na+/K+ transporting, beta 3 polypeptide
Hs.194236 8 LEP Leptin
Hs.713420 7 LOC100130236 CDNA FLJ46301 fis, clone TESTI4036012

CCACTGCACT 331 EST
Hs.683922 46 C8orf54 CDNA FLJ35455 fis, clone SMINT2004547
Hs.709365 5 RIOK3 RIO kinase 3 (yeast)
Hs.289123 5 DCTN2 Dynactin 2 (p50)

GCCTCAGTTC 256 EST
Hs.631498 102 Transcribed locus, strongly similar to XP 001082381.1
Hs.631499 44 Transcribed locus, strongly similar to NP 536851.1
Hs.586920 29 Transcribed locus, strongly similar to NP 001090497.1

AATGGATGAA 253 EST
Hs.680613 253 CDNA FLJ30447 fis, clone BRACE2009270

TGATTTCACT 138 EST
Hs.451549 46 FLJ44313 FLJ44313 protein
Hs.129283 46 CDNA clone IMAGE:5265638
Hs.703561 46 LOC100131532 Transcribed locus NP 536849.1

GCAAGCCAAC 132 EST
Hs.703684 121 LOC100131532 Transcribed locus, weakly similar to NP 536852.1

Hs.704111 11 FAM78A Transcribed locus NP 536852.1

AGGTCAGGAG 122 EST
Hs.489190 13 SLC25A13 Solute carrier family 25, member 13 (citrin)
Hs.352768 10 PSMB1 Proteasome (prosome, macropain) subunit, beta type, 1
Hs.620557 4 ANK2 Ankyrin 2, neuronal

ACCCTTGGCC 122 EST
Hs.631495 49 Transcribed locus, strongly similar to NP 536843.1

AAGGTGGAGG 118 EST
Hs.585012 115 WTIP Transcribed locus, strongly similar to XP 001724292.1
Hs.699463 1 CEBPA CCAAT/enhancer binding protein, alpha
Hs.337766 1 RPL18A Ribosomal protein L18a

TTGGCCAGGC 109 EST
Hs.370504 9 RPS15A Ribosomal protein S15a
Hs.651923 8 CNN2 Calponin 2
Hs.130293 7 CROP Cisplatin resistance-associated overexpressed protein

CCTGTAGTCC 100 EST
Hs.368960 5 NGLY1 N-glycanase 1
Hs.325978 4 NUMA1 Nuclear mitotic apparatus protein 1
Hs.631616 4 LOC147727 Hypothetical LOC147727

ACTTTTTCAA 76 EST
Hs.659985 69.99 XYLB Xylulokinase homolog (H. influenzae)
Hs.557644 5 Transcribed locus
Hs.383050 1 Transcribed locus, weakly similar to NP 001077.2 arylacetamide deacetylase



Table 3. Comparison of differentially (p < 0.05) expressed SAGE tags and UniGenes*.

SAGE library Sig. tags(%) Sig. UGs Uniq. UGsa Sig. UGs Comm. UGsb Uniq. Comm. UGsc

(Up/Down) (Up/Down) (Up/Down,%) (Up/Down) (Up/Down)

E33AD vs Ctl 156(0.41) 276(114/162) 100(48/52) 43(21/22,0.38) 24(9/15) 16(3/13)
E34AD vs Ctl 906(2.32) 1594(714/880) 523(97/426) 306(115/191,2.86) 189(43/146) 109(11/98)
E44AD vs Ctl 625(1.71) 1270(847/423) 320(108/212) 215(98/117,2.10) 88(25/63) 41(3/38)
E34AD vs E33AD 918(2.26) 1673(848/825) 499(131/368) 329(144/185,3.08) 189(53/136) 99(16/83)
E44AD vs E33AD 771(2.01) 1469(934/535) 428(172/256) 218(120/98,2.12) 94(31/63) 45(9/36)
E44AD vs E34AD 476(1.24) 761(533/208) 287(188/99) 114(59/55,1.11) 62(35/27) 34(17/17)

* Columns 2 to 4 shows results from Xu et al. 21, including significant tags and the percentage of all discovered tags, significant
UniGenes that significant tags match, and unique significant UniGenes. Column 5 shows the significant UniGenes and the percentage
of all discovered UniGenes obtained by our analysis. Columns 6 and 7 shows the common UniGenes shared by two methods. The
numbers X/Y in the parentheses show the breakdown between the up-regulated and down-regulated tags.
a The Unique UniGene refers to the one used in the paper of Xu et al. 21, i.e., the tags that map to only one UniGene cluster.
b These are the UniGenes shared by Column 4 and Column 5.
c The Unique UniGene refers to a UniGene all of whose tags match the UniGene only.

Table 4. Significant genes uniquely identified by NNLS
method known to be susceptibility candidates to AD

UniGene Symbol SAGE library Expressiona

Hs.551642 ANXA8 E34AD vs Ctl Down
Hs.551642 ANXA8 E34AD vs E33AD Down
Hs.551642 ANXA8 E44AD vs Ctl Down
Hs.551642 ANXA8 E44AD vs E33AD Down
Hs.546241 C4A E34AD vs Ctl Up
Hs.546241 C4A E34AD vs E33AD Up
Hs.546241 C4A E44AD vs E34AD Down
Hs.522555 APOD E34AD vs Ctl Up
Hs.522555 APOD E34AD vs E33AD Up
Hs.391561 FABP4 E44AD vs Ctl Up
Hs.391561 FABP4 E44AD vs E34AD Up
Hs.414795 SERPINE1 E44AD vs Ctl Up
Hs.414795 SERPINE1 E44AD vs E33AD Up
Hs.511367 CYP19A1 E34AD vs Ctl Up
Hs.514220 GRN E44AD vs Ctl Up
Hs.348387 GSTM4 E44AD vs Ctl Down

a Up means “Up-regulated”, Down means “Down-regulated”.

Significant differences between the two studies

are shown in Table 3. For example, the number

of significant UniGenes from our analysis is much

smaller than those discovered by Xu et al.21. Xu et

al. asserted that a UniGene is unique if there is at

least one significantly expressed tag that matches the

gene and there are no other UniGenes that match

such a tag. A drawback of this definition is that it

does not take into account all the expressed tags that

match the gene and thus may be prone to errors. In

our analysis, we can avoid the use of this concept

of uniqueness since the expressions of the tags and

of the genes are estimated by taking into account

matching relations among them. Because of this our

results may be more reliable than those by Xu et al..

The same argument can be made from the results in

Table 4, which shows the genes that are found to be

candidates for susceptibility to AD only in our study.

This gene set is obtained by comparing our signifi-

cant genes to the genes listed in AlzGene database

(http://www.alzforum.org/res/com/gen/alzgene/)

for each SAGE library. The AlzGene database pro-

vides a comprehensive, unbiased and regularly up-

dated collection of genetic association studies per-

formed on Alzheimer’s disease phenotypes. Some

genes, such as ANXA8 and C4A, appear in multiple

SAGE libraries. That seems to suggest their poten-

tial important role in the development of Alzheimer’s

disease.

The detailed Venn diagrams of the overlaps and

differences between our results and Xu’s results are

shown in Figure 3. As shown in the figure, the differ-

entially expressed genes shared between APOE3/4

and APOE4/4 AD patients are much more than

those shared between APOE3/4 and APOE3/3 AD

patients, and between APOE4/4 and APOE3/3 AD

patients.

With respect to several gene functional cate-

gories, the expression profiles that our analysis iden-

tifies are similar to those discovered by Xu et al.

(data not shown). For example, APOE4 AD alleles

activate multiple tumor suppressors, tumor inducers

and negative regulator of cell growth or repressors

that may lead to increased cell arrest, senescent and

apoptosis. In contrast, expression is decreased for

large clusters of genes associated with synaptic plas-



ticity, synaptic vesicle trafficking (metabolism) and

axonal/neuronal outgrowth. In addition, reduction

of neurotransmitter receptors and Ca2+ homeostasis,

disruption of multiple signal transduction pathways,

and loss of cell protection and notably mitochon-

drial oxidative phosphorylation/energy metabolism

are associated with APOE3/4 and APOE4/4 AD

alleles.

4. Discussion and Conclusions

SAGE data analysis based on NNLS method have

been performed on two sets of data: a human CD34+

hematopoietic cell SAGE library and a human hip-

pocampus cell SAGE library. Previous research in

this area focused on investigating genes that can be

uniquely matched SAGE tags, and thus ignores the

tags that have multiple matches. This limits the

range of genes for which expression patterns are an-

alyzed. To break the barrier, one must accurately

estimate the gene expression levels based on all the

tags counts. Although it is possible to obtain more

reliable annotate SAGE tags using “SAGEmap reli-

able” Tag-to-Gene assignments, the analysis scope is

largely decreased. Previous study showed that 38.1%

of the virtual tags in the “SAGEmap full” contain

more than one UniGene cluster, even in “SAGEmap

reliable” subdatabase, 12.7% contain more than one

UniGene cluster 14. Thus there is a pressing need to

develop new computational method for SAGE data

analysis that fully uses the tag counts and interre-

lated quantitative constraints among tags and genes.

The research described in this paper addresses

the above challenges. To the best of our knowledge,

there have been few attempts along our line. Our

significant contributions are:

(1) A nonnegative least squares method has been

introduced to SAGE data analysis. The expres-

sion levels of genes have been estimated from the

counts of all tags presented in a cell. This NNLS

method has been evaluated with another wetlab

SAGE tag annotation method, GLGI.

(2) A new algorithm to solve NNLS problem has

been proposed. The new algorithm uses a fixed

scaling matrix so as to alleviate compute inten-

sity. Also the algorithm uses graph partitioning.

(3) The newly proposed NNLS algorithm enables

systematic, consistent, and comprehensive anal-

ysis of SAGE data. The strategy has been em-

ployed to identify new candidate genes for sus-

ceptibility to Alzheimer’s desease.

Fig. 3. Comparison of regulation of gene expression by
APOE genotype. N(n1, n2) means the number of unique
significant genes discovered by Xu et al. is N , the number
of significant genes discovered by us is n1, and the number
common significant genes shared by two studies is n2. The di-
agram only show the number of genes in each area. (A) Venn
diagram of the UniGenes that are discovered in APOE3/3
AD, APOE3/4 AD and APOE4/4 AD samples and are up-
regulated from the control. (B) Venn diagram of the Uni-
Genes that are discovered in APOE3/3 AD, APOE3/4 AD
and APOE4/4 AD samples and are down-regulated from the
control.

Transcriptomics studies using next-generation

sequencing technologies have received intensive at-

tention recently. One promising application is to



quantify gene expression and alternative splicing us-

ing new sequencing technologies. In spite of rapidly

evolving, these new technologies have relatively high

error rate comparing to conventional sequencing

technology. One challenge in next-generation se-

quencing data analysis is to align sequence reads to

referance genome. Like SAGE data, the sequence

reads and genes have ambiguous mapping. Thus the

NNLS method described in this paper provides a

potential solution for analyzing next-generation se-

quencing data.
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