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Abstract

We have previously developed a method [1] for the in-
verse design of small ligands. This method can be used to
design novel compounds with optimized properties (such as
drugs) and has been applied successfully to the design of
small peptide antagonists to leukocyte functional antigen-1
(LFA-1) and its intercellular adhesion molecule (ICAM-1).
A key step in our method involves computing the Hilbert ba-
sis of a system of linear Diophantine equations. In our pre-
vious application, the ligands considered were small pep-
tide rings, so that the resulting system of Diophantine equa-
tions was relatively small and easy to solve. When consid-
ering larger molecules, however, the Diophantine system is
larger and more difficult to solve. In this work we present
a method for reducing the system of Diophantine equations
before they are solved, allowing the inverse design of larger
compounds. We present this reduction on our original LFA-
1/ICAM-1 dataset, where we were able to reduce a system
with 24 equations and 49 variables to an equivalent sys-
tem with 11 equations and 34 variables, giving a 10 times
speedup in performance. We also present the results of our
reduction on two new datasets, neither of which we could
solve previously: a set of 27 conazole fungicides and a set
of 61 γ-secretase inhibitors.

1. Introduction

In previous work [1], we proposed a method for the in-
verse design of small molecules. This method is based on

a fragmental descriptor called signature. Signature encodes
molecular structure by counting the occurences fragments
in a molecule. As an example, we show the molecular sig-
nature encoding of nitroglycerin in Figure 1. Further de-
tails on signature can be found in [3], where the signature
encoding is used in the calculation of quantitative structure-
activity relationships (QSARS) and is related to other topo-
logical descriptors.

Signature can also be used to reverse engineer molecu-
lar structures. This is done by deriving constraint relations
that must be present between fragments in order that the
fragments may be combined to form a molecule [1]. These
constraints consist of one graphicality equation and mul-
tiple consistency equations. The graphicality equation as-
sures that the molecular fragments can be combined to form
a connected molecular graph and assumes the form∑

i≥2

(i− 2)ni − n1 + 2 = 2z,

where ni is the number of vertices of degree i (number of
atoms connected to i other atoms), and z is a non-negative
integer. The consistency equations assure that the molec-
ular fragments can be re-connected such that the molecu-
lar bonds are consistent. In Figure 1 we show a consis-
tency equation which guarantees that the number of bonds
of type O → C must be equal to the number of bonds of
type C → O. Any molecular signature will satisfy the con-
straint equations, and conversely, any signature that satisfies
the constraint equations will correspond to some molecule.
By solving the constraint equations, we can obtain novel
molecular structures which can then be screened for certain
properties (e.g. drug activity using a QSAR).
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Figure 1. Signature encoding of Nitroglycerin.
Shown here is the molecular graph of Nitro-
glycerin and a corresponding signature en-
coding (to the right). Also shown (bottom
center) is the consistency equation for the
C ↔ O bond.

However, the constraint equations make up a linear sys-
tem of Diophantine equations, and solutions must consists
of non-negative integer coefficients. This type of system is
very difficult to solve (NP-hard) and the best known solver
[2] seems to be limited to about 50 or 60 variables for
our problem. In this paper, we present a series of simple
transformations which reduce the constraint equations. We
show that our reductions improve solution time and allow us
to provide at least partial solutions to previously unsolved
problems.

2. Methods

We reduce the constraint equations using three simple
linear transformations. To describe these transformations,
suppose we have m equations and n variables. We write
our Diophantine system as A0x0 = b, where A0

m×n =
(a0

ij),x
0
n×1 = (x0

j ),bm×1 = (bi), with a0
ij , bi integer and

x0
j non-negative integer. We use the superscript notation to

denote steps in our reduction, never exponentiation.
In our first reduction, we eliminate equations of the form

x0
j =

∑
k 6=j

a0
ikx0

k, (1)

where a0
ik ≥ 0 for k 6= j. To eliminate an equation of this

form, we replace any occurence of x0
j in A0x0 = b with

the corresponding sum
∑

k 6=j a0
ikx0

k. We can then eliminate
both the variable x0

j and the equation x0
j =

∑
k 6=j a0

ikx0
k to

obtain a reduced system A1x1 = b. Note that the condition
a0

ik ≥ 0 is necessary to ensure that x0
j ≥ 0. Further, we

obtain a linear transformation

x0 = T1x1, (2)

where T1 has n rows and n− 1 columns, and the jth row is
given by

∑
k 6=j a0

ikx0
k. By repeating this process, we obtain

a sequence T1, T2, . . . , Tp of transformations such that we
can obtain our original variables from our reduced variables
by

x0 = T1T2 · · ·Tpxp, (3)

where Apxp = b represents our equations after p reduc-
tions.

Our next transformation is achieved by considering
equations of the form

2xp
j =

∑
k 6=j

ap
ikxp

k, (4)

where ap
ik ≥ 0 for k 6= j. In this case, we observe that

ap
ik > 1 can be replaced by the remainder of ap

ik divided by
2, provided that xp

j is adjusted appropriately. Consider, for
example, the equation 2xp

1 = 3xp
2 + xp

3 = 2xp
2 + xp

2 + xp
3.

Here 2(xp
1 − xp

2) = xp
2 + xp

3 so that we can replace xp
1 by a

new variables xp+1
1 = xp

1 − xp
2. Since 2xp

1 = 3xp
2 + xp

3 we
know that xp

1 ≥ 3
2xp

2 ≥ xp
2 so that xp+1

1 = xp
1 − xp

2 ≥ 0.
In addition, the original variable xp can be recovered from
xp+1 by using the relation xp

1 = xp+1
1 +xp

2. Thus equations
of the form (4) again yield a sequence of transformations
Mp+1,Mp+2, . . . ,Mq so that

x0 = T1T2 · · ·TpMp+1Mp+2 · · ·Mqxq, (5)

where our further reduced system is now given by Aqxq =
b.

Finally, it often occurs that Aq has a few identically zero
columns after the previous reductions, and even some re-
peated columns. Identically zero columns represent free
variables, which can be removed, and repeated columns
represent groups of variables that occur together in every
equations. These variable groups can be replaced by single
variables and recovered later by solving equations with the
form ∑

ic

xq
ic

= xq+1
j , (6)

where the sum is over the only the indices ic corresponding
to a specific set of repeated columns. These substitutions
do not yield transformations of the type in (5), but they are
nevertheless easy to solve at a later stage. Upon removal of
identically zero and repeated columns, we obtain our fully
reduced system Arxr = b, where r ≥ q.



To solve the reduced system Arxr = b we use the Dio-
phantine solver in [2]. This solver produces a Hilbert basis
Hr for the system Arxr = b. This basis consists of a min-
imal set of solutions to Arxr = b such that any other so-
lution can be obtained via non-negative integer linear com-
binations of the solutions in Hr. To obtain the basis H for
the original system A0x0 = b, we add unit vectors for any
free variable previously eliminated as well as new minimal
solutions for any repeated columns that were removed. The
minimal solutions for the repeated columns are obtained by
solving the equations of the type found in (6) and replacing
the variables xq+1

j with the various possibilities for {xq
ic
}ic .

Finally, the full basis H for the original system A0x0 = b
is obtained using the transformation in (5).

3. Results

We first applied our algebraic reduction to the constraint
equations previously derived for peptide rings in an LFA-
1/ICAM-1 study [1]. For this problem, we obtained 24
equations with 49 variables. The Diophantine solver identi-
fied 2222 minimal solutions in the Hilbert basis. The same
basis was found using our reduced system but the Diophan-
tine solver was 10x faster, as shown in Table 1. To the the
effects of the different reductions, we also timed the solver
at different stages of the reduction process, shown in Fig-
ure 2. The most noticable improvement was seen using the
reduction equations in (1), giving a 5x speedup; the reduc-
tions equations in (4) had no effect on this problem; and the
reduction equations in (6) gave an additional 2x speedup.

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Number Basis Vectors

C
P

U
 T

im
e

Full Constraints
Reduced (1)
Reduced (4)
Reduced (6)

Figure 2. Effect of Algebraic Reductions. In
this plot we see the effects of the algebraic
reductions in (1), (4), and (6) on the perfor-
mance of the Diophantine solver.

Original Reduced % Reduction
Peptides

vars 49 34 30.6
eqs 24 11 54.2
cpu time – – 90.0

γ-secretase
vars 68 49 27.9
eqs 21 9 57.1
cpu time – – 98.0

Conazoles
vars 91 64 29.7
eqs 29 15 48.2
cpu time – – 94.1

Table 1. Performance Statistics. Here we
compare the use of the reduced constraint
equations with the original equations in terms
of number of variables, equations, and per-
cent reduction in cpu time.

We next applied our reduction to the inverse design of
γ-secretase inhibitors for Alzheimer’s disease. This dataset
was obtained from [4] and consisted of 61 compounds with
varying IC50 values. For this dataset we derived 21 con-
straint equations with 68 variables. The overall speedup for
this problem was approximately 51x. In fact, we could only
obtain one minimal solution using the full system of con-
straints. In the same time that this one solution was found,
we found 51 solutions using the reduced equations. Further,
we found 900 solutions after running the solver for 24 hours
(using the reduced system). These 900 minimal solutions
yield an arbitrary number of new γ-secretase inhibitors via
linear combinations. We computed over 700,000 new com-
pounds to start. A summary of the performance of our
method in this problem is also shown in Table 1.

Finally, we applied our reduction to the design of non-
toxic but still effective conazole fungicides. These 27 fungi-
cides were obtained from the Enivronmental Protection
Agency’s Persistent, Bioaccumulative, and Toxic (PBT)
Profiler database (www.pbtprofiler.net), each with a corre-
sponding fish chronic toxicity value (ChV). For this dataset,
we obtained 29 constraint equations with 91 variables. Us-
ing the full set of constraints, the Diophantine solver was
able to obtain only 4 minimal solutions. Using the reduced
equations, we obtained 68 solutions in the same time, giv-
ing a 17x speedup. We used the solutions to compute more
than 500,000 new conazole fungicides. Performance statis-
tics are again shown in Table 1.



4. Discussion

We have proposed a simple method for reducing a linear
system of homogeneous equations when using the signature
molecular descriptor for inverse design of chemicals. We
have tested the reduction on three datasets, including a set of
ICAM-1 inhibitory peptides, a set of γ-secretase inhibitors,
and a set of conazole fungicides. On these three datasets we
achieved an average reduction of 29.4% in the number of
variables and 53.2% in the number of equations, resulting
in an average reduction in computation time of 94.0%. This
increase in efficiency allows us to use the signature descrip-
tor to design large molecules, previously impossible with
our technique.
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