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1 Introduction

Explicitly considering all variables and chemical reac-
tions in a cell is unrealistic for a gene regulatory network
from modeling, analyzing and computing viewpoint. How-
ever, in a cell, many different time scales characterize the
gene regulatory processes, which can be exploited to reduce
the complexity of the mathematical models. For instance,
the transcription and translation processes generally evolve
on a time scale that is much slower than that of phosphory-
lation, dimerization or binding reactions. Moreover, in bi-
ological systems, there are many subsystems, such as gene
regulatory network, protein network or metabolic network,
which dynamically interact with each other but also are rela-
tively independent. In this work, we exploit such properties
to simplify the gene-protein network, which can be applied
to the quantitative simulation of a large cellular system.

2 Gene-Protein Network

Consider a system containing m chemical reactions with
n molecular species. Let z = (z1, ..., zn) be state of the
species, i.e. zi is the number of the i−th species at t, which
is a non-negative integer. Define p(z) to be the probability
for the state z at t. Then the dynamics of the system is
described by a master equation with initial state z0 at t = 0

∂p(z; t)

∂t
=

∑m
k=1[wk(z − rk)p(z − rk; t) − wk(z)p(z; t)](1)

where rk = (rk,1, ..., rk,n) is an integer vector for the
change of state, i.e. rk,j is the change in the number of
the j−th molecule by the k−th reaction. wk(z) is a tran-
sition rate (≥ 0) from state z to state z + rk by the k−th
reaction, which depends on the cell volume v (scalar) and
gene number vector u. u and v are generally all periodic
functions, synchronized with cell cycles. Notice that z − rk

should be non-negative although rk,j can be negative.
(1) theoretically provides full information of system per-

formances, but only a few simple cases are amenable to
exact solution due to its complexity for a large number of
variables. Next we exploit the fast-slow reactions to sim-
plify the master equation.
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Figure 1. Gene-protein network

3 Decomposition

Although dynamics are intertwined between gene net-
work and protein network, interactions among each network
are generally more active than those between them. Such
property can be explored to decompose the gene-protein
network. As schematically shown in figure 1, we define
the gene and protein networks in the following manner.

• Gene network is mainly composed of transcription,
translation, splicing, and degradation reactions, with
total numbers of direct gene-products, such as protein
and RNA numbers as variables.

• Protein network is comprised of all other chemical re-
actions, such as, phosphorylation, dimerization, bind-
ing, enzyme reactions and chemical modifications,
with free chemical numbers as variables.

Gene network involves the gene regulatory, and its dynam-
ics are generally slow in contrast to the relatively fast reac-
tions in protein network. In gene network, rather than the
free monomers, we adopt total numbers of gene products as
variables, which include not only free monomers but also
those among all complexes, such as dimers and other multi-
mers. Note that the degradation or depletion reactions of di-
rect gene-products (chemical monomers) are also included
in gene network. With such definition, we will show that
the gene-protein network can generally be decomposed into
gene network and protein network.

Without loss of generality, assume that the first m0 reac-
tions are in protein network. Rearrange the state variables
by z = (x, y) and rk = (φk, θk), where x = (x1, ..., xnx

),
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Figure 2. A simple network with one gene.

y = (y1, ..., yny
). xi is the number of a molecule synthe-

sized in a fast chemical reaction, and yi is the total number
of a mRNA produced by transcription reaction, or the total
number of a protein produced by the translation reaction in
gene network. Notice that yi for a protein is the total num-
ber including dimers and other complexes.

Next, we suppress the explicit time dependence of
p(z) for readability. Define a marginal function p(y) =∫

p(x, y)dx, where the integration is simply a summation
over all discrete x. p(x) is similarly defined as p(y). Then,
the joint probability function is written by the marginal
probability and conditional probability as

p(x, y) = p(x|y)p(y) = p(y|x)p(x). (2)

Example 3.1 Figure 2 shows a simple gene regulatory net-
work. A gene transcribes into mRNAs, which are fur-
ther translated into protein monomers. Then the protein
monomers are dimerized and act as transcriptional factors
to regulate the gene activity by binding to the promoter
site. Let numbers of free protein monomer and free DNA
are p and d respectively. Define numbers of mRNA, protein
dimers, and [protein:DNA] complex to be y1, x1 and x2 re-
spectively. Then the total numbers of protein and DNA are
y2 = p + 2x1 + 2x2 and u = d + x2.

The protein dimerization and DNA binding reactions are
fast dynamics.

p + p
k1⇀↽

k−1

x1 ; d + x1

k2⇀↽
k−2

x2. (3)

On the other hand, the transcription, translation and
degradation reactions are considered as slow dynamics.

d
αk3⇀ y1 + d ; x2

k3⇀ y1 + x2 (4)

y1
k4⇀ p + y1 ; y1

d1⇀ ∅ ; p
d2⇀ ∅ (5)

The transcription reaction occurs with or without x2 but at
different rates. There are five slow reactions.

Let z = (x, y) = (x1, x2, y1, y2) where x = (x1, x2)
and y = (y1, y2). Therefore, n = 4, m = 9,m0 = 4,
and nx = 2, ny = 2. The terms for k = 1, ..., 4 in Ta-
ble 1 correspond to (3), whereas the terms for k = 5, ..., 9
are derived from (4)-(5). Then, the master equation (1) is
obtained straightforward from Table 1 for Example 3.1.

Table 1. rk and wk for Example 3.1
k rk = wk(x, y)

(φk, θk)
1 1,0, 0,0 k1p

2/v = k1(y2 − 2x1 − 2x2)2/v
2 -1,0, 0,0 k−1x1

3 -1,1, 0,0 k2x1d/v = k2x1(u − x2)/v
4 1,-1, 0,0 k−2x2

5 0,0, 1,0 αk3d = αk3(u − x2)
6 0,0, 1,0 k3x2

7 0,0, 0,1 k4y1

8 0,0, -1,0 d1y1

9 0,0, 0,-1 d2p = d2(y2 − 2x1 − 2x2)

where rk = (φk, θk) = (φk,1, φk,2, θk,1, θk,2). Exactly w1 =

k1p(p − 1)/v. θk for all k = 1, ..., 4 and φk for all k = 5, ..., 9

are zero vectors.

Clearly, φk for k = m0 + 1, ...,m and θk for k =
1, ...,m0 are zero vectors. Actually the total numbers of di-
rect gene-products are affected only by transcription, trans-
lation and degradation reactions which are all in gene net-
work, whereas other chemical numbers vary only in the pro-
tein network although there exist interactions between gene
and protein networks. Then the protein network can be de-
scribed as

∂p(x|y)

∂t
=

m0∑

k=1

[wk(x − φk, y)p(x − φk|y) − wk(x, y)p(x|y)] (6)

Substituting (2) into (1) and summing over all x, we have
the evolution equations of the marginal functions for gene
network

∂p(y)

∂t
=

∑m
k=m0+1[w̄k(y − θk)p(y − θk) − w̄k(y)p(y)] (7)

where

w̄k(y) =
∑

x wk(x, y)p(x|y) (8)

is average value conditional to y. w̄k(y) can be expressed by
conditional moments or cumulants of x because wk(x, y) is
generally a polynomial of x and y.

According to (2), clearly we can obtain the dynamics of
gene-protein network by (6) and (7), which is much simpler
than the original (1).

4 Conclusion

We theoretically provided a general framework to de-
rive gene regulatory networks with stochasticity. We ex-
ploit the fast-slow dynamics of biological systems to reduce
the dimensionality, and take advantage of special interac-
tion structure of fast-slow variables to simplify the math-
ematical model, which significantly reduce the complexity
of gene networks. The numerical simulation also confirmed
the effectiveness of our method, which can be applied to a
large-scale quantitative simulation of cellular dynamics.


