
A Diffusion Model to Estimate the Inter-arrival Time of Charged Molecules in
Stochastic Event based Modeling of Complex Biological Networks

Preetam Ghosh, Samik Ghosh, Kalyan Basu and Sajal Das
The University of Texas at Arlington, Arlington, Texas, 76019-0015, USA

Email: {ghosh, sghosh, basu, das}@cse.uta.edu

Abstract

With biological experiments generating lots of empiri-
cal data, the challenge is to develop a modeling paradigm
that integrates structural, molecular and genetic data for a
quantitative understanding of physiology and behavior of
biological processes at multiple scales - starting from cell,
to tissues and finally to the whole organism. The complexity
of the problem motivates the use of computer or ”in silico”
stochastic event based modeling approach. We focus on
the signal transduction cascade triggered by extra-cellular
Mg2+ concentration in the two component PhoPQ regula-
tory system of Salmonella Enterica serovar Thphimurium,
and present the mathematical formulation for the estima-
tion of statistical parameters of inter-arrival time of mole-
cules/ions to a cell receptor as external signal.

1. Discrete Event Modeling Concept

We develop a discrete-event based “in silico” model [1]
for complex biological dynamic systems. This requires the
development of mathematical models to capture the defined
biological processes and obtain statistical parameters for
analyzing the “in silico” models. Identifying the biological
discrete events based on system knowledge, the set of re-
sources involved and calculating the time taken to complete
an event (which is termed in system modeling as the hold-
ing time of the discrete event) are the challenges in this ap-
proach. We first identify the biological processes involved
in the PhoPQ regulatory network (from the sensing of mag-
nesium at the cell membrane to the expression of virulent
genes) [2]. The schematic block diagram of the processes
capturing these sequence of actions is shown in Fig 1. Each
process block, has some input signal(s) and output signal(s)
which can trigger one or more processes. These signals, act-
ing as drivers for various resources used in the processes, to-
gether with the different holding times capture the dynamic
behavior of the system.

2. Diffusion Model 1

The actual diffusion process ofMg2+ ions inside the cell
membrane is illustrated in Fig 2 [3]. Diffusion takes place
through an ion-channel at the surface of the cell membrane.
This is captured by the following hypothetical mathemat-
ical model: an infinitely long capillary (open at one end)
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Figure 1. Biological Processes involved in the PhoPQ Regula-
tion Process in Salmonella

Figure 2. Membrane topography ofMg2+ transport systems
and other relevant proteins.

filled with water is inserted into a solution of known chem-
ical concentrationC0. The concentration of the chemical
species depends only on the distance down the tube and so
is governed by the diffusion equation:

∂c

∂t
= D

∂2c

∂x2
, 0 < x < ∞, t > 0 (1)

Here D is the diffusion constant having units
length2/time, c is the concentration of the chemi-
cal, t is time andx is the distance traversed inside the
capillary by the chemical. The boundary conditions
are C(0, t) = C0, C(x, 0) = 0 and the solution is:
C(x, t) = 2C0[1− 1

2π

∫ y

−∞ exp(− s2

2 )ds] wherey = x√
2Dt

(from [4]). We can compute the inter-arrival time between
the diffused molecules from the following theorem:

Theorem 1 The inter-arrival time between the diffusion of
the (i + 1)th and ith molecules/ions (diffusion is based on
the concentration gradient only) is given by:

Ii+1 − Ii =
π(2i + 1)
4C2

0G2D
(2)
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Figure 3. Inter-arrival
time Vs no. of molecules
for Diffusion Model 1
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Figure 4. Inter-arrival
time against no. of mole-
cules plot for Diffusion
Model 1 with concentra-
tion 0.166× 10−8 moles
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Figure 5. Inter-arrival
time against no. of mole-
cules plot for Diffusion
Model 2 with concentra-
tion 0.166× 10−8 moles
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Figure 6. Inter-
arrival time against no.
of molecules plot for
Diffusion Model 2

where Ii+1 and Ii are times taken for diffusion of the
(i+1)th andith molecules respectively, andG is the cross-
sectional area of the capillary.

PhoP-P transport to cytosol process can be modeled using
Theorem 1, but it is not suited for diffusion of charged ions.

3. Diffusion Model 2

We need to consider the ion flux through the membrane
of width l (supposing a potential difference exists across it
with φ(0) = φ1 andφ(l) = φ2) created due to movement
of positively chargedMg2+ ions. We assume that the po-
tential gradient through the channel is constant:

∂φ

∂x
=

φ1 − φ2

l
=

V

l
, V = φ1 − φ2 (3)

The total flux,J = −D[∂c(x,t)
∂x + αc(x, t)V

l ], where,α =
zF/RT , z = total number of positive charges inMg2+,
F = Faraday’s constant,T = absolute temperature and
R = gas constant. The diffusion equation becomes:

∂c

∂t
== −D

∂2c

∂x2
− aD

∂c

∂x
, 0 < x < ∞, t > 0 (4)

where,a = αV/l. We now consider diffusion out of a plane
sheet of thicknessl through which the diffusing substance
is initially uniformly distributed and the surfaces of which
are kept at zero concentration. Thus the ion channel of
lengthl is assumed to contain the entire diffusing substance.
Each molecule coming out of this sheet is assumed to en-
ter the cell membrane (Mg2+ arrival process). The corre-
sponding boundary conditions areC(x, 0) = C0, C(0, t) =
0, C(l, t) = 0, 0 < x < l. The solution is:

C(x, t) =
∞∑

m=1

2C0mπ(1− (−1)me−
zF V
2RT )

(δ)
e

δDt
l2
− zF V x

2RT l sin
mπx

l

where,δ = m2π2+ z2F 2V 2

4R2T 2 . The inter-arrival time between
diffused molecules is given by Theorem 2:

Theorem 2 The inter-arrival time between the diffusion
of the(i + 1)th and ith molecules/ions when the diffusion
is based on both concentration and potential gradients
across the cell is given byIN−i − IN−i−1, whereIN−i

andIN−i−1 are the times taken for diffusion of theith and

(i + 1)th molecules respectively, andG is the area of the
plane sheet and can be solved from the following equations:

N−i−1 = 2C0G
∑∞

m=1 m2π2{1−(−1)me
− zF V

2RT

δ }2 e
δDIN−i−1

l2

N − i = 2C0G
∑∞

m=1 m2π2{1−(−1)me
− zF V

2RT

δ }2 e
δDIN−i

l2 .

4. Numerical Results

The cross-sectional area of the capillary is taken in the
range ofµm, andD = 10−5cm2/s. Fig 3 shows that
larger the initial concentration, lesser is the inter-arrival
time. Fig 4 shows a stair-case function for the inter-arrival
times. With high initial concentration, the inter-arrival time
remains fixed for a few molecules before increasing to the
next level. Figs 5 and 6 incorporates the potential gradient.
We assume a constant potential gradient of 60mV for the
diffusing molecules to overcome. Length of an ion channel
is taken as 1 mm (we add up the lengths for the ion channels
present on the cell membrane). Fig 5 shows the same stair-
case functionality and Fig 6 shows the increasing trend of
inter-arrival times. Instead of the linear increase of model
1, we now see an exponential increase in the inter-arrival
times. The inter-arrival times are higher than the first model
because the molecules have to overcome the potential gra-
dient as well in order to diffuse.
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