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Abstract 
 

We describe a novel application of computational 
phylogenetic approaches to predict functional linkage 
among proteins, using proteomes derived from whole 
genome sequence data. The methods detect independ-
ent instances of the correlated gain or loss of pairs of 
genes on branches of a phylogenetic tree, on the as-
sumption that functionally linked genes are often 
gained and lost at approximately the same time during 
evolution. According to this view, several correlated 
gain and/or loss events between a pair of genes sug-
gests the gene products are functionally linked. We 
implement this approach using Dollo parsimony and 
maximum likelihood (ML) to seek correlated evolution 
among 21 eukaryotic species. We compare these ap-
proaches to each other and to the existing method of 
phylogenetic profiles, which seeks an across-species 
correlation but does not explicitly incorporate a phy-
logenetic tree. We assess all methods according to a 
positive test set of functionally linked protein pairs 
based on the MIPS catalogue of yeast protein com-
plexes, and a negative test set of random protein pairs. 
Both Dollo parsimony and ML are able to achieve far 
greater specificity than the existing method of phyloge-
netic profiles. We show that ML is by far the best ap-
proach, provided that an appropriate model is used. 
Best results are obtained if the rate of gain of genes is 
fixed at a low value, to prevent modeling of multiple 
gains. With such a model, proteins with strong ML 
evidence of correlated evolution among eukaryotes are 
almost certainly functionally linked. 
 
1. Introduction 
 

A popular computational approach for predicting 
functional links is the method of phylogenetic pro-
files [1]. This predicts functional linkage on the basis 
that genes with correlated patterns of presence and 

absence across several species’ genomes are likely to 
be functionally linked. 

We show that results are improved if one seeks not 
correlated presence and absence of genes, but rather 
correlated gains and losses of genes on a phylogenetic 
tree. We implement this phylogenetic approach using 
Dollo parsimony [2], and ML approaches to detect 
correlated gain and loss [3] both with a relatively gen-
eral ML model [4] and with a restricted model tailored 
to evolution of eukaryotic gene content. We show that 
not only the framework (phylogenetic profiles or corre-
lated gain/loss), but the model within that framework 
has a profound effect on the quality of results. 
 
2. Materials and methods 
 

We obtained a species-by-proteins matrix showing 
presence (“1”) or absence (“0”) of orthologues of each 
yeast (Saccharomyces cerevisiae) gene in 20 other 
species using BLASTP [5] with Inparanoid [6]. We 
built a sequence-based phylogenetic tree using a con-
catenated multiple alignment of 19 single-copy genes 
found to be present across the 21 species. 

For the method of phylogenetic profiles, the predic-
tion score for candidate pairs of genes was the number 
of species which had a matching state for the two pro-
teins [1]. 

For Dollo parsimony the scores we used were, 
firstly, the number of branches of the tree on which 
ability to code the two proteins changed in a positively 
correlated manner, and secondly, this value minus the 
number of branches of the tree on which non-
correlated changes occur. We refer to these as 
“Dollo 1” and “Dollo 2”, respectively. 

We also evaluated ML approaches that compare a 
model of correlated evolution with a model of uncorre-
lated evolution of binary traits on a phylogeny [3]. 
Here, traits represent presence and absence of genes. 
We allowed any number of gains of the genes on the 
tree [4] (“ML 1”), and also restricted parameters repre-



senting initial gains of genes to an arbitrary low value 
of 0.1 (“ML 2”). In both cases the score is the likeli-
hood ratio statistic for the model comparison. 

Across the range of score cut-offs for each method 
we calculated specificity and sensitivity, using a nega-
tive test set of 441,217 pairs of proteins and a positive 
test set of test set of 9,178 pairs of proteins based on 
the MIPS Comprehensive Yeast Genome Database 
complex catalogue [7]. 
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Figure 1. Performance of the five methods used 

for predicting functional links. 
 
3. Results and discussion 
 

The quality of results for each method are illustrated 
in Figure 1. Score cut-offs achieving sensitivity greater 
than 0.1 are not shown because they have poor speci-
ficity, for any of the methods. 

The method of phylogenetic profiles predicts with 
poor discrimination, achieving a maximum specificity 
of only 0.04 (at sensitivity = 0.09). Only the point rep-
resenting the maximum cut-off, of perfectly correlated 
distribution patterns, appears in Figure 1. Other cut-
offs give greater sensitivity, but with even worse speci-
ficity. 

The Dollo 1 method is more accurate, achieving 
specificity of 0.35 (at sensitivity 0.0009). The Dollo 2 
method achieves still higher specifity peaking at at 
0.45 (at an improved sensitivity of 0.001). However, at 
less strict cut-offs it is inferior to Dollo 1, giving lower 
specificity for a given sensitivity. 

The ML 1 method achieves greater specificity than 
the method of phylogenetic profiles, peaking at 0.14 (at 
sensitivity = 0.002). But ML 1 performs more poorly 
than the Dollo 1 and Dollo 2 methods. This is due to a 
poor match between gene content evolution and the 
ML 1 model. ML 1 specifies no limit on the number of 
independent gains a gene may have, even though we 

do not believe multiple gains of genes are likely among 
eukaryotes. The ML 2 model is more realistic because, 
to an extent, it represents this prior belief. ML 2 results 
are greatly superior to results of all other methods 
used. ML 2 even achieves specificity of 1, at sensitivity 
= 0.0007. Various less extreme cut-offs will be useful 
in practice due to their higher sensitivity, for example a 
sensitivity of 0.01 at specificity = 0.8 (Figure 1). 
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