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Abstract

We show that for theMinimum Quartet Inconsistency
problem, if the number of quartet errors isO(n), where
n is the number of taxa under consideration, then it can
be solved in polynomial time. This improves the previously
best algorithmic result saying that if the number of quartet
errors is at most(n− 3)/2 then the problem can be solved
in polynomial time.

1. Introduction

Phylogenetic analysis to characterize the evolutionary
relationships among a set of taxa provides the fundamen-
tal understanding of the taxa on various aspects including
their origin and functional relationships. It has become a
routine work to perform such an analysis at the availability
of genetic data. Traditional phylogenetic analysis faces the
data disparity problem, which becomes severe at the avail-
ability of whole genomes. One way of resolving this issue is
to use different but the most applicable phylogenetic anal-
ysis methods to handle different subsets of taxa, and then
to assemble a global phylogenetic tree out of the achieved
sub-trees for the subsets. The promise of this approach is
that, since every piece of phylogenetic analysis on subsets
is of high confidence, the global analytical results must also
be of high confidence, though there might be needs to re-
solve potential conflicts among the sub-trees for subsets.
The quartet-based phylogeny construction methods can be
classified into such efforts to construct a (global) phylogeny
from sub-trees on subsets of4 taxa.

In our discussion of phylogeny construction, the phy-
logeny is an unrooted binary tree whose leaves bijectively
map to the set of taxa and every internal node in the tree has
degree3. In quartet-based phylogeny construction meth-
ods, researchers try to build a phylogeny (called aquar-
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tet topology) for every subset (or most subsets) of4 taxa
(called aquartet), and then assemble a global phylogeny
for the whole set of taxa to satisfy all the quartet topologies
that have been built, or if not at all possible, to satisfy as
many of them as possible. For a quartet, there are3 possi-
ble phylogenies or topologies associated with it. For sim-
plicity, we use[s1, s2|s3, s4] to denote the quartet topology
in which the path connectings1 ands2 doesn’t intersect the
path connectings3 ands4.

Given a phylogenyT on a set of taxaS, for every quar-
tet X, we can derive a topology forX by computing the
induced subtree ofT onX. Such a set of

(
n
4

)
induced quar-

tet topologies is denoted asQT . The computationally in-
teresting problem is in the other way: The input is a setQ
of quartet topologies in which, for every quartet, there is at
most one topology for it (i.e. no ambiguity). The question
is whether or not there exists one global phylogenyT for S
such that each quartet topologyq ∈ Q is the same as the
one derived fromT . If q is the same as the quartet topol-
ogy derived fromT for the quartet, thenT satisfiesq or q
is consistentwith T . If there exists one global phylogenyT
satisfying all quartet topologies inQ, i.e. Q ⊆ QT , thenQ
is compatibleandT is a phylogenyassociatedwith Q. The
above recognition problem is called theQuartet Compati-
bility Problem(QCP).

If the input quartet topology setQ contains exactly one
topology for every quartet, thenQ is complete; Otherwise,
Q is incomplete. Subsequently, we have the complete QCP
problem and the incomplete QCP problem. It has been
known that the complete QCP problem can be answered in
O(n5) time, wheren is the size of taxa setS. Further-
more, if Q is compatible, then the associated phylogeny
T is unique and can be constructed within the same time.
The situation changes whenQ becomes incomplete, where
the recognition problem becomes NP-complete. IfQ is not
compatible, for a solution phylogenyT , we call those quar-
tet topologies inQ − QT quartet errorson T . The more
interesting computational problem is the optimization prob-
lem whereQ (either complete or incomplete) is not com-



patible and the goal is to construct a phylogeny to satisfy as
many quartet topologies as possible. This is the so-called
Maximum Quartet Consistency Problem(MQC). A dual
minimization problem to the MQC problem, theMinimum
Quartet Inconsistency Problem(MQI), where the input is
the same, is to construct a phylogeny to minimize the num-
ber of quartet errors. Despite the fact that the MQC and the
MQI problems have the same optimal solution(s), their ap-
proximabilities differ a lot. The MQC problem is NP-hard.
The complete MQC problem admits aPolynomial Time Ap-
proximation Scheme(PTAS); The incomplete MQC prob-
lem is MAX SNP-hard. The complete MQI problem is NP-
hard and it admitsO(n2)-approximation algorithms. No
algorithms with better approximation ratios are presently
known, despite some tries [4]. The incomplete MQI prob-
lem is nonapproximable within any finite ratio.

For the duration of the paper the MQC/MQI problem is
assumed to mean thecompleteMQC/MQI problem, unless
otherwise specified. There are several (exponential time)
exact algorithms proposed for the MQC/MQI problem, as
well as (polynomial time) heuristics. Among the heuristics,
there is a class ofquartet cleaningmethods, one of which,
the global edge cleaning algorithm, turns out to solve the
MQC/MQI problem optimally when the number of quartet
errors is no larger than(n− 3)/2 [2, 5].

2. A Polynomial Algorithm for MQI with O(n)
Quartet Errors

Gramm and Niedermeier [5] presented a branch-and-
bound algorithm for solving the MQI problem when the
number of quartet errors is known exactly ahead of time.
The interested readers may refer to [5] for more details.
The most important idea in the branch-and-bound algorithm
is to resolve global quartet conflicts through resolving lo-
cal quartet conflicts [1, 3], referred to aslocal conflicts. A
subset of3 quartet topologies that involve exactly5 taxa is
called alocal subset. If the quartet topologies in a local sub-
set are incompatible, then the local subset becomes alocal
conflict. For example,{[a, b|c, d], [a, c|b, e], [a, c|d, e]} is a
local conflict.

Theorem 2.1 [5] Given a complete quartet topology setQ
over a taxon setS and a taxone ∈ S, Q is compatible iff
there exists no local conflict whose taxon set includese.

Note that there are
(
n−1

3

)
quartet topologies inQ each of

which involves taxone and there are
(
n−1

4

)
quartet topolo-

gies inQ none of which involves taxone, wheren is the
number of taxa.

Lemma 2.2 Let E denote the set of quartet errors in an
optimal solution to the MQI problem. There exists a taxon

e such that the number of quartet topologies inE involving
e is less than or equal to4|E|/n.

Lemma 2.3 In the MQI problem, if there is no quartet error
involving taxone, then the problem can be solved inO(n4)
time.

PROOF. We build all the local conflicts whose taxon sets
include taxone. Since there is no quartet error involving
taxon e, every such local conflict must contain exactly2
quartet topologies involvinge and the third quartet topol-
ogy, denoted byq, should not involvee. Moreover,q must
be changed to resolve the local conflict andq is included in
at most6 distinct local conflicts. By Theorem 2.1, we can
determine all the quartet errors inO(n4) time. 2

Theorem 2.4 There is anO(n5 + 24cn12c+2)-time algo-
rithm that solves the MQI problem when the number of
quartet errors is at mostcn, wherec is a positive constant
andn is the number of taxa.

PROOF. The key idea in the algorithm is that when there are
at mostcn quartet errors, there must exist a taxone that is
involved in at most4c quartet errors (Lemma 2.2). There-
fore, the algorithm tries every combination ofk (k ≤ 4c)
quartet topologies involving taxone, changes their topolo-
gies, and then applies Lemma 2.3 to solve the remaining
problem. We remark that through some careful analyses,
the running time of the algorithm can be decreased a bit.2
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