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1. Introduction

Phylogenetic reconstruction techniques often produce
multiple, competing evolutionary hypotheses. The um-
brella term phylogenetic postprocessing encompasses meth-
ods that attempt to reconcile the ambiguity. Three classes
of phylogenetic postprocessing results are presented. (1)
A sublinear (1 + ε) approximation algorithm is derived for
computing the familiar Robinson-Foulds (RF) distance [4]
between two trees. (2) Standard consensus methods are
augmented to take edge weight into consideration. A new
consensus method based on edge weights is introduced.
(3) A generalized family of metrics on tree space is de-
rived. The metrics can be equipped with sensitivity to edge
weights. Two members of the family are the RF metric and
the weighted RF metric.

The time complexity of the RF approximation algorithm
is logarithmic in the number of trees and completely inde-
pendent of the size of each tree (save a more expensive,
one time, embedding step). This algorithm is easy to im-
plement and should prove particularly useful in clustering-
based phylogenetic postprocessing because tree size is more
prohibitive than the number of competing trees in phyloge-
netic reconstructions of biological datasets (as opposed to
simulation-generated datasets).

The remainder of this extended abstract focuses solely on
the RF approximation algorithm. The reader is referred to
[3] and the poster in this conference for detailed treatment
of the other results.

2. Background

2.1 Trees as Bit Vectors

We utilize an ability to represent phylogenetic trees un-
ambiguously as vectors. We now outline the representation.

Denote the set of all possible unrooted, leaf-labeled trees
on n taxa as Tn. Notice that removing an edge in a phyloge-
netic tree splits the set of taxa in two. An edge is uniquely

identified by the split that it induces. There are
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ways to split a set of taxa in two. By assigning indices to
splits it is possible to represent trees as vectors. Denote the
set of splits induced by the edges in tree T as Σ(T ). Assign
indices to splits by using a function

f :
⋃

T∈Tn

Σ(T ) → N

which assigns each split to an integer on the interval [1, b].

Definition 2.1. The bit-vector representation of a phyloge-
netic tree T is vT ∈ R

b where each element of vT is taken
as

vT [i] =

{
1 if f−1(i) ∈ T

0 otherwise

Basically, for any tree, we construct a b-dimensional bit-
vector such that bits are set based upon which splits are
present in the tree.

2.2 Robinson-Foulds Metric

The usual way of comparing two trees is to count the
number of edges in which they differ. This calculation de-
fines the Robinson-Foulds (RF) metric [4].

dRF (TA, TB) =
1
2

(|Σ(TA) − Σ(TB)|)

+
1
2

(|Σ(TB) − Σ(TA)|)

where − is set difference, |.| is cardinality, and + is arith-
metic.

The bit-vector representation is well suited for calculat-
ing the RF metric. By construction, the RF metric is simply
the ‖.‖1-norm (i.e. ‖v‖1 =

∑b
i=1 |v[i]|) of the difference

vector between two trees in bit-vector form.



3. Sublinear Robinson-Foulds

We borrow a technique from geometry to compact vector
dimensionality while preserving the Euclidian vector norm
of difference vectors. We show that the technique yields
a very good approximation of Robinson-Foulds distance
while providing an asymptotic speedup over the standard
method for computing RF distance.

3.1 The Embedding

Consider the following randomized embedding of a set
of bit-vectors V ∈ R

b, |V| = m. The technique is due to
Indyk and Motwani [2].

Construct a b × 4ln(m)
ε2 matrix, f , where each element is

a random number taken from the Gaussian distribution with
mean 0 and variance 1. Multiply the bit-vector representa-
tion of each tree by f . Now the new input set consists of m

vectors each in 4ln(m)
ε2 dimensions. First notice that the di-

mensionality of each tree in the new input set is independent
of original tree size and solely dependent on m, the number
of trees.

The Johnson-Lindenstrauss lemma [1] can be used to
prove that the ‖.‖2 norm of each embedded point vf , ∀v ∈
V , obeys

(1 − ε)‖v‖2 ≤ ‖vf‖2 ≤ (1 + ε)‖v‖2

with probability 1 − 1
n2 .

In other words, the ‖.‖2 (Euclidian) norm between em-
bedded vectors is an arbitrarily good approximation of the
‖.‖2 norm between non-embedded vectors. See figure 1 for
a graphical representation of the embedding step.
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Figure 1. A sketch of randomized embedding.
Each tree is a row in V . f is a random ma-
trix with elements drawn from the Gaussian
distribution. Each row of V ′ is the embed-
ded representation of the corresponding row
vector in V .

3.2 The Robinson-Foulds Connection

We take a set of m trees, convert them to bit-vector nota-
tion, and embed them into a space with O(log (m)) dimen-
sions as just outlined. As mentioned previously, the embed-
ding preserves the ‖.‖2 norm between vectors. The RF dis-
tance between trees in bit-vector notation is the ‖.‖1 norm.
However notice that by working with bit vectors (rather than
vectors over a larger field) we have[3]

‖.‖1 = (‖.‖2)2

.
Thus to calculate the ‖.‖1 norm of an arbitrary differ-

ence vector between two bit-vector trees it is sufficient to
calculate the ‖.‖2 norm.

Accordingly, calculating an arbitrarily accurate approx-
imation of RF distance amounts to vector difference fol-
lowed by vector norm (inner product) on vectors in
O(log(m)) dimensions.

The prohibitive quantity in phylogenetics tends to be n,
the number of leaves in a tree, rather than m, the number
of plausible trees. Thus we anticipate that O(log (m)) <<
O(n) often, and that our technique will prove useful in prac-
tice.

4. Conclusion and Future Work

Since the embedding step itself has time complexity
supra-logarithmically dependent upon m, our technique be-
comes useful when the number of pairwise RF calculations
is large enough such that the complexity of the standard
technique asymptotically exceeds the cost of embedding.
This is typical in applications such as clustering. We plan
to implement the technique and empirically assess its per-
formance in such situations.

References

[1] P. Indyk. Algorithmic applications of low-distortion geomet-
ric embeddings. In FOCS ’01: Proceedings of the 42nd IEEE
symposium on Foundations of Computer Science, page 10.
IEEE Computer Society, 2001.

[2] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In Proceedings
STOC 1998, pages 604–613, 1998.

[3] N. D. Pattengale. Phylogenetic postprocessing. Master’s The-
sis, May 2005.

[4] D. Robinson and L. Foulds. Comparison of phylogenetic
trees. Mathematical Biosciences, 53:131–147, 1981.


