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Abstract— With the increasing use and size of phylogenies, the
output of reconstruction programs must be stored for future
reference, in which case post-tree analyses such as consensus
must be run from a database. We set out to determine whether
such analyses can be run at a reasonable cost; we chose consensus
(which summarizes the information from many trees into a single
tree) because of its general applicability and because it creates
a severe demand on the database by requiring examination of
every edge of every tree.

Methodology: We preprocess the data (trees) to create tables that
support consensus computations, using our own extensions to
the PhyloDB schema of Nakhleh ef al. For each of the three
consensus methods (strict, majority, and greedy), we compare
the database computation with the memory-resident computation
using the Phylip consensus programs. We use a large selection
of datasets of varying sizes (up to 1,000 trees of up to 1,500 taxa
each) and of varying degrees of commonality.

Results: The computations from the database are very practical:
they often run faster, and never run more than 5 times slower,
than the computations in main memory using Phylip. The addi-
tional storage costs are easily handled by any database system,
while the preprocessing costs remain reasonable. Thus suitable
preprocessing of phylogenetic data allows post-tree analyses to be
run directly from the database at much the same cost as current
memory-resident analyses.

I. OVERVIEW

A phylogeny represents the evolutionary history of a group
of organisms. Phylogenies are reconstructed from many types
of data through a variety of methods, mostly using from
molecular data using maximum parsimony (MP), maximum
likelihood, or Bayesian (MCMC) estimation. MP and MCMC
methods generate many trees: summarizing such collections
of trees is done by taking their consensus.

Consensus methods identify bipartitions that appear in most
of the trees. Bipartitions present in all trees define the strict
consensus; bipartitions present in a majority of the trees define
the majority consensus; finally, the greedy consensus considers
bipartitions ordered by decreasing frequency of appearance
in the input set of trees [1]. All three consensus can be
computed efficiently, but require much memory, since each
tree may contribute O(n) new bipartitions. Consensus analysis
is the most common type of post-tree analysis. Currently such
analyses are conducted on ephemeral data: trees are kept in
main memory only for the duration of an interactive session.

Large phylogenies are being reconstructed (the largest re-
ported has over 10,000 taxa [2]) and larger ones are being
targeted, up to the “Tree of Life,” the phylogeny of all 10—
10® organisms on the planet. Reconstruction at these scales

is very time-consuming and sure to be a one-time affair; the
trees obtained after months of computation must be stored in
a database, just as one records steps in a lab notebook.
Nakhleh et al. [3] proposed PhyloDB, a schema that stores
phylogenies in a structured manner. We extend PhyloDB and
use the paradigm of preprocessing, storing, and querying
to a much larger extent than used so far in any area of
bioinformatics, by preprocessing existing database elements
(trees) to construct new database elements (bipartitions), in
order to support analyses with simple database queries on the
new tables. Our experiments indicate that the time required to
compute any consensus from the database is usually less (and
never more than 5 times larger) than the time needed in a
memory-resident approach. Moreover, our approach becomes
more effective as the size of the problem increases; indeed, for
very large problems, using a database becomes mandatory.

II. PHYLOGENETIC DATABASES

The phylogenetic database, TreeBASE [4], uses a simple
relational schema to store trees in the Newick string format
(see [5]), which does not support efficient data retrieval within
the trees. The PhyloDB schema [3] was designed to store
phylogenetic data for purposes of analysis; it includes internal
relations such as Edge, Tree_Taxon, etc. Phylogenetic trees
stored using this schema can be efficiently queried on database
systems that support transitive closure queries. We extend
PhyloDB to support efficient handling of bipartitions.

III. HANDLING BIPARTITIONS

We generate bipartitions from trees in the database by
traversing (using transitive closure) the edge defining a bi-
partition to collect the group of taxa in the subtree; we set
the bit corresponding to each taxon in this subgroup to 1. The
resulting bit patterns are stored in the Partition table, which
can efficiently support the following queries.

1) Find all distinct bipartitions for a given set of trees and
list all trees containing them.

2) List all bipartitions and their frequency of appearance in
each tree where this frequency is greater than or equal
to some threshold.

3) List all distinct bipartitions sorted by the frequency of
appearance of each bipartition in a given set of trees.

4) Given a model phylogeny 7', find bipartitions from a tree
that are not present in " (false negatives) or bipartitions
from T that are not present in any tree (false positives).



The first three queries can be used to compute the strict,
majority, or greedy consensus, respectively, while the last
query is needed to assess the quality of reconstructions.

The greedy consensus requires testing each candidate bi-
partition for compatibility with already chosen bipartitions.
For that test, we use the following characterization [1], which
can be implemented with bit-pattern logical operations in the
database: two groups of taxa are compatible iff one is a subset
of the other or they are disjoint.

IV. EXPERIMENTAL DESIGN AND RESULTS

We ran all three consensus algorithms using Phylip in main
memory and our approach from the database. Our datasets
were parameterized by the number of trees, for which we used
100, 500, and 1,000, and by the number of taxa, for which
we used 100, 500, 1,000, 1,500, and 2, 000.

We generate a set of binary trees in 3 steps. We use the
r8s code [6] to generate a rooted, leaf-labelled binary tree
under a Yule process. From this one tree, we generate a small
collection of distinct trees by applying a random sequence
of Tree Bisection and Reconnection operations. Finally, from
each of the resulting trees, we generate a cluster of closely
related trees by applying a random sequence of Nearest-
Neighbor Interchange operations in restricted areas of the
trees—creating the “islands” of phylogenetic analysis [7]. The
collection of all resulting trees forms one instance.

The strict consensus algorithm on m trees of n taxa each
takes O(mn) time using Day’s algorithm [8]. However, Phylip
does not implement Day’s algorithm, but treats strict consensus
as a special case of majority consensus, so that both run in
O(n?m) time. (The bipartition of every one of the ©(mn)
edges in the input must be computed.) The running time of the
greedy consensus algorithm is O(n?m + n?p) where p is the
total number of distinct bipartitions present in each dataset—
the algorithm may have to test every distinct bipartition for
compatibility with already selected ones.

To compute the consensus from the database, we run a
single query asking for the list of all bipartitions with a given
property. The database server selects only those bipartitions
with that property and returns them in serial order through the
cursor mechanism, thereby enabling us to process only one
bipartition at a time and saving us a lot of memory.

Fig. 1 shows the running times of the Phylip and PhyloDB
implementations of the strict consensus. The running times of
the greedy consensus (Fig. 2) increases more sharply with the
numbers of trees and taxa, because p then tends to increase
beyond m or n. Fig. 2(a) shows that, as number of trees
increase, the overall ratio decreases due to the slow increase in
p: as we increase number of trees, the probability of getting a
bipartition not contained among the processed trees decreases.
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Fig. 1. Running times of Phylip and PhyloDB for the strict consensus for
1000 taxa (top) and 500 trees (bottom).
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Fig. 2. Running times of Phylip and PhyloDB for the greedy consensus for
1000 taxa (top) and 500 trees (bottom).
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