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1. Introduction

Gene rearrangements have successfully been used in
phylogenetic reconstruction and comparative genomics (see
the survey of [4] and the monograph of [6]), but usually
under the assumption that all genomes have the same gene
content and that no gene is duplicated. While these assump-
tions allow one to work with organellar genomes, they are
too restrictive when comparing nuclear genomes [1], where
the main challenge is how to deal with gene families, specif-
ically, how to identify orthologs. While searching for or-
thologies is a common task in computational biology, it is
usually done using sequence data. We approach that prob-
lem using gene rearrangement data. Sankoff [5] first ad-
dressed this problem with his introduction ofexemplars, in
which he suggested identifying a single gene within each
family (the exemplar) on the basis of a parsimonious cri-
terion (using the fewest rearrangements) and discarding all
others. Our group provided an alternate approach in which a
correspondence is established between gene families on the
basis of conserved segments [3, 8]; our results suggested
that considering all members of a gene family yields bet-
ter results than keeping only exemplars, but were limited in
that the assignment of orthologs did not take into account
any rearrangement structure beyond conserved segments.

Here we take steps to remedy this problem by provid-
ing an optimization framework derived from the breakpoint
graph (the basic structure behind the last decade of work
in gene rearrangements [2]) in which to phrase the prob-
lem; we give preliminary theoretical results in support of
our framework.

2. The Breakpoint Graph

The basic structure describing a pair of genomes with no
duplicates and equal gene content is thebreakpoint graph
(really a multigraph)—for a careful and readable descrip-
tion of its construction, see [7]. In our case, however, gene

families in G1 need not be singletons, so we need to ex-
tend the construction. LetB(G1) = (V,E) denote the break-
point graph forG1 andG2 (because of our conventions,G2

is known onceG1 is). As in the regular breakpoint graph,
each singleton geneg in G1 becomes a pair of vertices,g−

andg+ (the “negative” and “positive” terminals), joined by
an edge; we leave out the gene families with multiple mem-
bers, since only the singletons have a well-defined structure,
but we now need to accommodate gaps left in the sequence
where duplicate genes exist inG1. We add adesire edge (in
the charming terminology of [7]—also known elsewhere as
a gray edge)(a−i ,b+

j ), for each memberi and j of gene fam-
ilies a andb, respectively, whenevera andb differ by one
in the indexing (i.e., are neighbors inG2). We add areality
edge(ap

,bq) if a is the element to the left ofb in G1 and ei-
therp = q if a andb have different parities (inG1 naturally)
or p 6= q if a andb have the same parity. Figure 1 illustrates
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Figure 1. The breakpoint graphs for the two
candidates for gene 9.

the construction.

3. The Cycle Splitting Problem

We can formulate the orthology assignment problem as
an optimization problem within the context of the break-
point graphB(G1): choose an assignment of orthologs (one
from each multigene family inG1) such that the number of
cycles in the augmented breakpoint graph (B(G1) to which
the chosen candidates have been added) has the largest pos-
sible number of cycles.



Consider the signed genome(6,9,8,−10,−7,9,11).
There are two occurrences of gene 9 and we must choose
which one to call orthologous with gene 9 inG2. Figure
1 shows the two breakpoint graphs. Note that the graph on
left, where the candidate lies between 6 and 8, has one more
cycle than the graph on the right, where the candidate lies
between 7 and 11; thus the first candidate is a better choice.
The choice of candidate is advantageously viewed on break-
point graph inscribed in a circle as shown in Figure 2. Now
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Figure 2. (a) The graphs of Figure 1 inscribed
in a circle. (b) The result of overlaying the two
graphs from part (a).

overlay the two choices into a single graph, as shown in Fig-
ure 2(b). Two curved lines meet on the perimeter between
10− and 8+, denoting the two choices. The solid line indi-
cates that choosing the candidate between 6 and 8 gives rise
to desire edges that do not cross in the inscribed representa-
tion. The dashed line indicates that the other candidate gives
rise to crossing desire edges. Each line meets the perimeter
at one end between the two terminals of the candidate and at
the other end between its bookends. Figure 3(a) illustrates

Figure 3. (a) An instance of the many-to-one
cycle splitting problem.

a more general instance with three multigene families.
The collection of all lines (which we refer to asopera-

tions) that share an endpoint represents all members of the
gene family inG1, so we also call it a family and call its
common endpoint thefamily home. We can now state the
constraints for the optimization problem: (i) each family
home is a distinct point on the circle; (ii) the family home
is not the endpoint of any operation not in that family; and
(iii) the other endpoint (on the circle) of each operation is
unique to that operation. The problem thus becomes pick-
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Figure 4. (a) A 3-star and two 4-chains. (b)
Four 3-stars.

ing as many operations as there are homes per family such
that the cycle count is maximized.

4 Theoretical Results

We characterize certain operations and groups of opera-
tions that don’t positively contribute to the cycle count. Two
such structures we callk-stars andk-chains. Figure 4 gives
two examples of how these structures can interact.

We also identify a graph-theoretical framework that can
guarantee optimality to a sub-form of our problem.
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