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Abstract 

 
Studying the genetic control of molecular, 
anatomical and/or morphological phenotypes in 
model organisms is a powerful tool in the functional 
analysis of a gene. The goal of our research is to 
develop algorithms that discover phenotypes of 
behavior in model organisms, which may identify, 
categorize, and quantify these phenotypes under 
conditions of minimal a priori information.  Starting 
from a non-invasive video monitoring of a model 
organism, we propose an eigen-decomposition of the 
organism’s behavior captured in video.  Traditional 
clustering techniques in space, time, and frequency 
can utilize this decomposition to characterize the 
categorical behaviors of an animal, and for an 
analysis of the behavioral repertoire.  This supplies a 
quantified analysis of behavior with minimal 
assumptions, a crucial first step in the genetic 
analysis of behavior. 
 
1. Introduction 
 
 The study of behavior is difficult, and 
particularly so in its methodology.  Behavioral 
psychologists, ecologists, and neuroscientists have 
worked for many years to develop analyses that 
provide powerful, unbiased insight into the behavior 
of an animal - yet the relationship between genetic 
and phenotypic patterns in behavior remains obscure.  
We currently lack a general method for the 
identification of behavioral phenotypes and, more 
fundamentally, lack a means to quantify behaviors 
and behavioral repertoires too complex to be 
discerned by a human observer. 
 Traditional analyses of behavior have typically 
taken two approaches.  Categorical analyses such as 
ethograms have first identified behaviors by 
category, working from initial observations. 
Quantitative records are made using these original 

definitions as a (relatively) impartial signpost, a 
formulation that minimizes post-hoc and ad-hoc 
errors of phenotype and pattern.  In contrast, 
behaviorist psychologists have demanded novel 
behaviors of their subjects, in an effort to 
demonstrate the universality of underlying principles. 
 Our method proposes a third class of analysis 
alongside the categorical and behaviorist approaches, 
by the application of sensor technology, multivariate 
analysis and time-series methods [2].  If a video 
record of an animal’s behavior is subject to a 
Singular-Value Decomposition (SVD), the resulting 
singular vectors capture the variance in its 
appearance over time. Moreover, they constitute a 
subspace of that appearance, and the organism’s 
behavior defines its trajectory in that subspace.  
Behaviors may be identified either as dense loci or 
repetitive motifs in this trajectory, and behavioral 
phenotypes are identified by the pattern of specific 
behaviors. Because of their origin in the 
decomposition, we term these EigenPhenotypes.  
 As a proof-of-principle study, we present 
experiments showing that the molting of the moth 
Manduca sexta (an established phenotype) can be 
discovered without foreknowledge of the form or 
organization of that behavior. 

In the molting behavior of the moth caterpillar 
Manduca sexta, a cascade of both steroid and peptide 
hormones coordinates the timing of cuticle loosening 
and shedding.  Three behaviors have been described 
previously: two, termed pre-ecdysis I and II, appear 
to loosen the old cuticle before shedding; a third, 
called ecdysis, actually sheds the cuticle [3].  It is 
known that pre-ecdysis I and II overlap, but their 
interaction and modulation is unknown. Furthermore, 
he transition from pre-ecdysis to ecdysis is 
irreversible, but the control of its timing remains 
obscure. This ignorance stands despite the 
importance of this behavior: failure to shed the 
cuticle at ecdysis inevitably results in death.  



 
Figure 1.  The decomposition of the behaviors of caterpillar ecdysis shows oscillatory behaviors.  
(a)  The principal singular vectors for a short (~15s) video; major postural changes are dominant 
in the first several vectors, and detail emerges with the smaller singular values.  (b)  
Corresponding singular values.  (c)  The trajectory of this video in the first three singular vectors; 
the oscillation reflects the underlying contractile movements of the animal. (d)  The trajectory 
through the first singular vector  for a 6 minute video shown directly and as a periodogram; the 
transition from pre-ecdysis to ecdysis is visible at ~100s.  e)  The same video, projected onto the 
subspace derived from the video of another animal’s ecdysis, shows similar oscillations that 
reflect the underlying behavior. 
 
2. Methods 
 

We begin with a video of the behaviors, from 
which we segregate the animal from its background 
using a minimum bounding box. We then create a 
matrix M of dimensions ( f ,m × n) , where f is the 
number of frames in the video and nm×  denote the 
number of pixels. Our next step involves analyzing 
the video using the SVD. Unfortunately, the large 
data size precludes a direct application of the SVD 
technique. Instead, we utilize Monte-Carlo methods 
to reduce the computational load, while retaining an 
estimate of the resulting error [1]. The salient steps in 
the algorithm can be described as follows:   

1. Sample s centered rows of M from a 
uniform distribution without replacement, 
and include each as a row of N 

2. Compute N*NT, and its k-rank SVD: 

NNT = λt
2

t=1

k

∑ wtwt
T  

3. Compute ht = (NT * wt ) /NT * wt
T  

4. Return H, whose columns are the right 
singular vectors ht ; W, whose columns are 
the wt, and ∑, a diagonal matrix containing 
the singular values kλλ ,...,1 . 

This formulation decomposes N as N=W∑H  in time 
O(m × n) .  The scores of all frames can be found as 
X = MH∑, each row of which is a trajectory scored 

against one right singular vector over time. 
 
3. Discussion 
 
 Several points merit further elaboration.  First, 
that the singular vectors do not parameterize the 
behaviors per se, but instead the animal’s posture.  
However, the motifs that recur in the trajectory time 
series signify repetitions of a single behavior.   
Alternately, other vector spaces may provide better 
encoding for specific behavioral patterns. Periodic 
behaviors, for example, may be better decomposed in 
the frequency domain.  Ultimately, the application of 
an appropriate decomposition and corresponding 
time-series analysis tools opens behavior to novel 
analysis, for which several tools will prove useful. 
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