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Abstract

Let ℵ be the set of{1, 2, , ..., m}, [x, y] denote the set
of [x, x + 1, ..., y], where1 ≤ x, y ≤ m. Given two
permutationsσA and σB of a set ℵ, A 2-tuple of in-
tervals ([x1, y1], [x2, y2]) is called common intervals if
σA([x1, y1]) = σA([x2, y2]). In this paper, we propose
a sufficient and necessary condition for a 2-tuple of inter-
vals to be common intervals. Based on these conditions, we
present a generic algorithm that finds all common intervals
of these two permutations.

1 Introduction

The problem of finding common intervals has been
drawing much attention in recent years as a useful tool in
the study of comparative genomics. The notion of common
intervals can be used to detect possible evolutional associ-
ations between genes ([2]) and functional connection be-
tween proteins ([4], [5]).

Uno and Yagiura [1] presented an optimalO(n + K)
time algorithm for finding all common intervals whereK
(≤ (

n
2

)
) is the number of outputs. This algorithm is further

extended in [3] to find all common intervals ofk permuta-
tions in optimalO(nk + K) time.

However, the success of the algorithm in [1] relies on one
of two conditions (i.e. Lemma 4.1 and Lemma 4.2 in [1]) on
the permutations. In this paper, we present a sufficient and
necessary condition for a 2-tuple of intervals to be common
intervals. Based on these conditions, an algorithm to find
all common intervals of the permutations is proposed. The
algorithm requires no condition, thus can be applied for any
two permutations.

For a permutationπ and an interval[x, y], following
functions are defined:l(x, y) = mini∈[x,y] π(i), u(x, y) =
maxi∈[x,y] π(i), f(x, y) = u(x, y)− l(x, y)− (y − x).

Two basic lemmas are given below:

Lemma 1.1. Let π be a permutation of setℵ =
{1, 2, 3, ..., m}, x, α andβ be elements inℵ andα < x <
β,

(i) If π(x) > π(α) > π(β), thenf(x, z) > 0 for everyz,
β ≤ z ≤ m;

(ii) If π(x) < π(α) < π(β), thenf(x, z) > 0 for everyz,
β ≤ z ≤ m;

(iii) If π(x) > π(β) > π(α), thenf(z, x) > 0 for everyz,
1 ≤ z ≤ α;

(iv) If π(x) < π(β) < π(α), thenf(z, x) > 0 for everyz,
1 ≤ z ≤ α.

Lemma 1.2. If [a, b] is not a common interval, then either
(i) or (ii) holds:

(i) There exists an elementt0 ∈ [a, b] such thatf(a, z) >
0 for everyz, t0 ≤ z ≤ m.

(ii) There exists an elementt0 ∈ [a, b] such thatf(z, b) >
0 for everyz, 1 ≤ z ≤ t0.

2 Preliminary Algorithm

The input of the algorithm is a permutation onℵ =
{1, 2, 3, ..., m} which can be represented as a one dimen-
sional arrayπ[m]:

(
1 2 . . . x . . . m

π(1) π(2) . . . π(x) . . . π(m)

)
(2.1)

Let aij = f(i, j), 1 ≤ i ≤ m − 1 and2 ≤ j ≤ m.
aij = 0 if and only if [i, j] is a common interval. Lemma 1.1
enables us to identify intervals that are not common inter-
vals without calculation; Lemma 1.2 guarantees that those
remaining intervals are common intervals.

Considering the matrix formed byaij , the main idea of
the algorithm is to determine the lower bound in each row



and upper bound in each column of the entries that are not
common intervals

For each elementx in (2.1), we defineUP (x) = {a|a <
x and π(a) > π(x)}, US(x) = {b|b > x and π(b) >
π(x)}, LP (x) = {c|c < x andπ(c) < π(x)}, LS(x) =
{d > x andπ(d) < π(x)}. Note: (1) Each of these sets
could be empty and will be denoted asφ; (2) UP (x) ∪
LP (x) = [1, x− 1] andUS(x) ∪ LS(x) = [x + 1,m].

Following steps are followed to find the horizontal
boundaryyx:

Step 1.Find i ∈ LP (x) thatπ(i) = max{π(LP (x))}.
Step 2.Find µ, the minimum value ofLS(x) such that

π(i) > π(µ).
If either LP (x) or LS(x) is empty; or if neither
LP (x) nor LS(x) is empty but no suchµ exists,
we defineµ = ∞.

Step 3.Find j ∈ UP (x) thatπ(j) = min{π(UP (x))}.
Step 4.Find λ, the minimum value ofUS(x) such that

π(j) < π(λ).
If either UP (x) or US(x) is empty; or if neither
UP (x) nor US(x) is empty but no suchλ exists,
we defineλ = ∞.

Step 5.Takeyx = min{µ, λ}.
Similar steps can be followed to find the vertical bound-

aryzx:

Step 1.Findh ∈ LS(x) thatπ(h) = max{π(LS(x))}.
Step 2.Find α, the maximum value ofLP (x) such that

π(α) < π(h).
If either LP (x) or LS(x) is empty; or if neither
LP (x) nor LS(x) is empty but no suchα exists,
we defineα = 0.

Step 3.Findk ∈ US(x) thatπ(k) = min{π(US(x))}.
Step 4.Find β, the maximum value ofUP (x) such that

π(β) > π(k).
If either UP (x) or US(x) is empty; or if neither
UP (x) nor US(x) is empty but no suchβ exists,
we defineβ = 0.

Step 5.Takezx = max{α, β}.
Finally, by the procedure below, all the common inter-

vals are determined:

for( i = 2; i ≤ m− 1; i + +)
if (zi < i− 1)

for( j = zi + 1; j ≤ i− 1; j + +)
if( yj > j )

output common interval[j, i]

3 Implementation of the Preliminary Algo-
rithm

The major steps of the preliminary algorithm described
in the previous section include computation of following
values for eachx, 2 ≤ x ≤ m− 1:

(i) max{π(LP (x))}, max{π(LS(x))},
min{π(UP (x))} andmin{π(US(x))};

(ii) λ(x), β(x), α(x) andµ(x).

In this section, iterative methods for calculating values
in (i) and (ii) are presented respectively.

The implementation of the algorithm is devised in such
a way that one result is determined using the previous ones,
thus all the common intervals can be found in nearly linear
time.

References

[1] T. Uno and M. Yagiura. Fast algorithms to enumerate
all common intervals of two permutations. Algorith-
mica, 26(2):290-309, 2000.

[2] Thomas Schmidt and Jans Stoye. Quadratic Time Al-
gorithms for Finding Common Intervals in Two and
More Sequences. Proceedings of CPM 2004, LNCS
3109, 347-359, 2004.

[3] S. Heber and J. Stoye. Finding All Common Intervals
of k Permutations. In Proceedings of the 12th An-
nual Symposium on Combinatorial Pattern Match-
ing, CPM 2001, page 207-218, 2001.

[4] E. M. Marcotte, M. Pellegrini, H. L. Ng, D. W.
Rice, T. O. Yeates, and D. Eisenberg. Detecting pro-
tein function and protein-protein interactions from
genome sequences. Science, 285:751-753, 1999.

[5] R. Overbeek, M. Fonstein, M. D’Souza, G. D. Pusch,
and N. Maltsev. The use of gene clusters to infer
functional coupling. Proc. Natl. Acad. Sci. USA,
96(6):2896-2901, 1999

2


