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Abstract

When building predictors of disease state based on gene
expression data, gene selection is performed in order to
achieve a good performance and to identify a relevant sub-
set of genes. Although several gene selection algorithms
have been proposed, a fair comparison of the available re-
sults is very problematic. This mainly stems from two fac-
tors. First, the results are often biased, since the test set is
in one way or another involved in training the predictor, re-
sulting in optimistically biased performance estimates. Sec-
ond, the published results are often based on a small num-
ber of relatively simple datasets. Therefore, no generally
applicable conclusions can be drawn. We therefore adopted
an unbiased protocol to perform a fair comparison of state
of the art multivariate and univariate gene selection tech-
niques, in combination with a range of classifiers. Our
conclusions are based on seven gene expression datasets,
across many cancer types. Surprisingly, we could not de-
tect any significant improvement of multivariate feature se-
lection techniques over univariate approaches. We specu-
late on the possible causes of this finding, ranging from the
small sample size problem to the particular nature of the
multivariate gene dependencies.

1. Methods and Results

Selection algorithms A set of genes (L) ordered accord-
ing to their relevance is provided by a gene selection al-
gorithm. We implemented the following gene selection al-
gorithms: 1)univariate search technique (U), which esti-
mates the importance of each gene individually, based on
the signal-to-noise-ratio (SNR) [6] or t-test[5] as criteria; 2)
the base pair (BP) approach, which evaluates the relevance
of pairs of genes et al. [4]; 3) a greedy forward search (F) et
al. [4]; 4) Recursive Feature Elimination (RFE) [7], which
is an iterative backward selection approach, that employs
the Support Vector Machine (SVM) to estimate the feature

weights; and 5) the Liknon classifier [3], which simultane-
ously performs relevant gene identification and classifica-
tion.

Evaluation framework In order to avoid any bias, we
perform the selection of the genes and the evaluation of
the classification performance in two independent steps, as
proposed in [12] and illustrated in Figure 1. In the train-
ing phase the optimal gene size k! is estimated in a 10-fold
cross-validation scheme. The selection algorithm is then ap-
plied to the whole training set D1 in order to obtain the best
k! genes, i.e. the optimal gene-set, and the final classifier
is trained. Finally, the performance of the gene selection
strategies together with the corresponding classifiers (Near-
est Mean (NMC), Fisher (FLD) or Support Vector (SVM)
classifiers) is estimated using a 10-fold cross-validation pro-
cedure.

The experimental results are summarized in the Table 1.

2. Conclusions

We have performed a comparison of state of the art
multivariate and univariate gene selection algorithms across
several cancer diagnostic problems. Surprisingly, we could
not detect any significant improvement when employing
multivariate gene selection techniques. The univariate se-
lection approach with a simple classifier outperforms or is
comparable with the results of the other methods. Therefore
information about the gene’s correlation, if present, cannot
be detected by the statistical analysis of gene expression
data. We argue that this is due to the very limited sample
size, which prevents the detection of complex patterns in
the data.
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Figure 1. Gene selection and classification framework employed to evaluate the different approaches.

Table 1. The mean and the standard deviation of the 10-fold cross-validation error (in percentage) for
the different approaches and datasets employed in the study.

Method CNS [9] Colon [1] DLBCL [2] HNSSC [10] Leukemia [6] Breast [8] Prostate [11]
gene selection mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std
U, SNR, NMC 30.4 ± 6.5 12.9 ± 4.2 2.5 ± 2.5 21.2 ± 7.1 4.8 ± 2.7 33.0 ± 3.4 9.7 ± 4.2
U, SNR, FLD 42.5 ± 7.3 19.2 ± 5.9 15.8 ± 6.4 33.3 ± 6.6 8.0 ± 3.2 29.9 ± 3.6 10.0 ± 3.0
U, t-test, NMC 32.5 ± 4.9 12.5 ± 4.2 2.5 ± 2.5 21.2 ± 7.3 4.8 ± 2.7 33.5 ± 3.8 10.8 ± 3.4
U, t-test, FLD 35.8 ± 6.5 11.7 ± 3.5 15.8 ± 6.4 36.2 ± 6.2 12.0 ± 4.2 32.6 ± 3.0 8.0 ± 2.5

BP greedy, FLD 43.8 ± 6.2 12.9 ± 3.8 10.0 ± 4.3 36.2 ± 7.0 11.6 ± 3.6 35.8 ± 2.3 9.8 ± 3.3
F, FLD 47.9 ± 5.1 15.4 ± 4.1 10.8 ± 3.7 45.4 ± 8.5 10.2 ± 4.2 35.4 ± 4.2 14.0 ± 3.4

RFE, FLD 34.2 ± 5.0 22.9 ± 4.4 16.7 ± 5.3 35.0 ± 6.3 3.5 ± 2.6 33.8 ± 3.5 10.0 ± 2.6
RFE, Svm 35.4 ± 5.0 22.1 ± 3.5 15.8 ± 5.2 35.4 ± 7.2 4.5 ± 2.6 32.6 ± 3.2 8.0 ± 2.9

Liknon 32.9 ± 6.1 13.3 ± 4.2 13.3 ± 5.3 37.5 ± 7.4 11.8 ± 4.0 34.5 ± 5.2 10.8 ± 3.7
no gene selection mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std

NMC 42.1 ± 5.5 17.9 ± 3.3 6.7 ± 3.5 29.2 ± 7.2 3.5 ± 2.6 36.7 ± 3.2 33.7 ± 3.9
FLD 32.9 ± 6.3 21.7 ± 3.7 14.2 ± 5.4 32.5 ± 6.6 4.5 ± 2.6 35.8 ± 4.1 8.0 ± 2.5
SVM 35.4 ± 7.0 22.1 ± 3.5 9.2 ± 3.8 29.6 ± 5.7 3.5 ± 2.6 34.3 ± 4.2 8.0 ± 2.9
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