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Abstract 
We propose a new methodology for two-way cluster 

analysis of gene expression data using a novel sparse 
matrix factorization technique that produces a 
decomposition of a matrix in a set of sparse factors. This 
method produces a set of bases and coding matrices that 
are not only able to represent the original data, but they 
also extract important localized parts-based patterns. We 
applied the method to gene expression data sets in an 
attempt to uncover latent relationships between samples 
and genes in DNA microarray experiments. 
  
1. Introduction 
 

One of the main goals in the analysis of large and 
heterogeneous gene expression datasets is to identify 
groups of genes that are co-expressed in subsets of 
experimental conditions. The identification of these local 
structures plays a key role to understand the biological 
events associated to different physiological states as well 
as to identify gene expression signatures. Classical one-
way clustering techniques, especially hierarchical 
clustering, have been frequently applied to cluster genes 
and samples separately in order to identify this type of 
local patterns. In the last few years, many authors have 
proposed the application of two-way clustering methods 
(also known as biclustering algorithms) to identify gene-
experiment relationships [1].  

In this paper we introduce a new biclustering method 
based on a modified variant of the Non-negative Matrix 
Factorization (NMF) algorithm [2] that produces a sparse 
representation of the gene expression data matrix, 
making possible in this way, its use as a biclustering 
algorithm.  NMF has been introduced as a matrix 
factorization technique that produces a useful 
decomposition of data in a product of two matrices that 
are constrained by having non-negative elements. It can 
be interpreted as a parts-based representation of the data 
due to the fact that only additive, not subtractive, 
combinations are allowed. Here, we show that this matrix 
decomposition can be used to cluster genes and 
conditions that are highly related in sub-portions of the 
data. 
 

 
 
 
2. Methods 
 

Formally, the non-negative matrix decomposition can 
be described as ≈V WH  where p n×∈V  is a positive 
data matrix with p variables (samples) and n objects 
(genes), p q×∈W  are the reduced q basis vectors or 
factors ( q p≤ ), and q n×∈H  contains the coefficients 
of the linear combinations of the basis vectors (also 
known as encoding vectors). All matrices V, W and H 
are non-negative, and the columns of W are normalized 
(sum up to 1).  The objective function, based on the 
Poisson likelihood, is: 
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The relative magnitude of non-zero coefficients in 
matrix W reflects the relevance of each gene in each 
factor. In the same way, the coefficient values of the 
samples in each row of H reflect the importance of each 
factor to approximate the original experiment. Therefore, 
the set of genes and samples that show high coefficients 
for the same factor are highly related in a sub-portion of 
the data and constitute a gene expression bicluster.  

Even if NMF has been presented as a method capable 
of finding the underlying component-based structure of 
complex data, there is no explicit guarantee in the 
method to support this property, other than the non-
negativity constraints. In fact, in MMF there is a high 
degree of overlapping among basis vectors that contradict 
the intuitive nature of the “parts” [3].  Therefore in order 
to extract significant biclusters a real sparse NMF model 
capable of producing more localized feature 
representations is needed. To this end, we conducted a 
modification of the model as the means to achieve global 
sparseness. The new model denoted as “Non-Smooth 
Non-negative Matrix Factorization” (nsNMF), is defined 
as V=WSH, where the positive symmetric matrix 

q q×∈S  is a smoothing matrix defined as 

( )1 T

q
θθ= − +S I 11 , I is the identity matrix, 1 is a vector 

of ones, and the parameter θ  controls the sparseness of 
the model, satisfying 0 1θ≤ ≤ . 



The interpretation of S as a smoothing matrix can be 
explained as follows. Let X be a positive, non-zero, 
vector. Consider the transformed vector Y=SX. If 

0θ = , then Y=X, and no smoothing on X has occurred. 
However, as 1θ → , the vector Y tends to the constant 
vector with all elements almost equal to the average of 
the elements of X. This is the smoothest possible vector, 
in the sense of “non-sparseness”, because all entries are 
equal to the same non-zero value, instead of having some 
values close to zero and others clearly non-zero. The new 
algorithm is derived by simply substituting the nsNMF 
model into the divergence functional defined above, and 
minimizing it for a given sparseness parameter. 
 
3. Results 
 

In order to evaluate the performance of the method we 
applied it to the analysis of several simulated datasets as 
well as the soft-tissue tumor dataset generated by Nielsen 
et al. [4]. In the case of synthetic data, our method was 
able to correctly identify different types of embedded 
biclusters, many of which could not be detected by 
standard clustering algorithms. In the case of the real 
gene expression dataset, we applied nsNMF with q=4 
and the obtained results showed that the proposed 
methodology was able to cluster samples belonging to 
the same tumor type and, at the same time, the set of the 
most important genes that induced these partitions.  

For example, using the coefficients in the first factor 
to order the genes and samples clustered together the set 
synovial sarcomas (Figure 1A) and those genes that were 
co-expressed in this group of tumors. Among the genes 
that showed high coefficients in this factor were, for 
example, EGFR and SALL2, which have been previously 
related to this type of tumors. 

Similarly, the second factor revealed the partition of a 
group of 8 gastrointestinal stromal tumors as well as the 
set of genes that are relevant to induce this partition 
(Figure 1B). As in the above case, genes that have been 
reported as markers of gastrointestinal stromal tumors 
such as the KIT gene, FLJ10261 (DOG1) or PRKCQ, 
showed very high coefficients in this factor. 

Using the values of the third factor a heterogeneous 
group of samples comprising liposarcomas, 
leiomyosarcomas, schwannomas and malignant fibrous 
histiocytosarcomas were clustered together (Figure 1C). 
This cluster is similar to the heterogeneous group of 
tumors discussed in the original paper. Additionally, our 
approach gave not only a clustering of samples and genes 
but also their internal ranking within this local structure. 

The last structure defined by the fourth sorted factor 
revealed genes mainly over-expressed in a group 
containing six of the 11 leiomyiosarcomas and one 
liposarcoma (Figure 1D). Genes involved in muscle 
contraction and muscle development (for example 
CNN1, KCNMB1, MYH11, PLN, SNTA1) showed high 
coefficients for this factor. It is clear, therefore, the 
relationship among these biological processes and the 
tissue origin of the leiomyosarcomas samples. 

4. Conclusions 
 

In the Bioinformatics field, a great deal of interest has 
been given to Biclustering due to its capacity in 
providing new insights and important information about 
the complex relationship between genes and 
experimental conditions. We have shown in this study 
that Non-smooth Non-negative matrix factorization 
seems to be a good alternative for this analysis. 
Experimental results have proved that the nsNMF 
algorithm described here is able to achieve this goal. The 
obtained representation of the bases show clear localized 
features of the data due to the sparseness conditions 
imposed to the algorithm. We hope this new method 
actively helps in the data analysis and knowledge 
discovery process in gene expression experiments. 

 

 
Figure 1. Reconstructed matrix using: A) The first sorted factor, both 
the basis and the encoding vector (synovial sarcomas are marked with a 
black line). B) The second sorted factor (gastrointestinal stromal tumors 
are marked with a black line). C) The third factor (the group of 
heterogeneous tumor cluster is marked with a black line). D) The fourth 
factor (six leiomyosarcomas and one liposarcoma samples are marked 
with a black line) 
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