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Abstract 

Hierarchical and k-means clustering are two major 
analytical tools for unsupervised microarray datasets. 
However, both have their innate disadvantages. 
Hierarchical clustering cannot represent distinct 
clusters with similar expression patterns. Also, as 
clusters grow in size, the actual expression patterns 
become less relevant. K-means clustering requires a 
specified number of clusters in advance and chooses 
initial centroids randomly; in addition, it is sensitive to 
outliers. We present a novel hybrid approach to 
combined merits of the two and discard disadvantages 
we mentioned above. It is different from existed method: 
carry out hierarchical clustering first to decide 
location and number of clusters in the first round and 
run the K-means clustering in another round. The brief 
idea is we cluster around half data through 
hierarchical clustering and succeed by K-means for 
the rest half in one single round. Also, our approach 
provides a mechanism to handle outliers.  Comparing 
with existed hybrid clustering approach and K-means 
clustering in 2 different distance measure on Eisen’s 
yeast microarray data, our method always generate 
much higher quality clusters. 
 
1. Introduction 

Advances in microarray technology have made it 
possible to simultaneously monitor the expression of 
thousands of genes in genomes.  The challenge is to 
effectively analyze and interpret this large volume of 
information. Exploration of gene expression data sets 
is always problematic due to its inherent dispersion and 
missing values (Quackenbush, 2001).  Thus, dealing 
with outliers is also an important issue toward analysis 
methods. Clustering methods can be divided into two 
general classes, designated supervised and 

unsupervised clustering.  In this paper, we focus on 
unsupervised clustering which may again be separated 
into two major categories: partition clustering and 
hierarchical clustering. There are many algorithms for 
partition clustering category, such as k-means 
clustering (MacQueen 1967), k-medoid clustering, 
genetic k-means algorithm (GKA), Self-Organizing 
Map (SOM) and also graph-theoretical methods 
(CLICK, CAST). Among those methods, K-means 
clustering is the most popular one because of simple 
algorithm and fast execution speed.  However, there 
are three major parts that require improvements: First, 
the number of k (clusters) must be decided before 
execution. Second, random choosing of the initial start 
points makes it impossible to obtain reliable results 
without much iteration of the entire clustering process 
(Shin et al, in preparation). Third, it’s sensitive to 
outliers. Although hierarchical clustering nests and 
represents the clusters as a dendrogram that provides 
an easy understanding of the data, the quality of 
clusters often degrades as more data are joined. It is 
becoming increasingly clear that none of the 
approaches alone are sufficient and that the application 
of various techniques will allow different aspects of the 
data to be explored.  Therefore, we seek to combine the 
strength of both approaches and discard the 
disadvantages. Initially, we tried to generate starting 
points for k-means clustering from the hierarchical 
method, but the results are not good enough. In the 
end, a novel concept is to carry out the hierarchical 
clustering as the first step, and then not only generates 
the required information for K-means, but makes good 
use of clusters created in the first step. In this paper, we 
illustrate how this technique can be carry out by using 
Eisen et al yeast microarray data (79samples × 
2467genes). 



Section 2 gives the introduction of two distance 
measurement for DNA chip data. Section 3 discusses 
both K-means clustering and hierarchical clustering. 
Section 4 shows how we create our algorithm and how 
it works. Section 5 compares H-K-means with the old 
methods and draw conclusions. We have our 
discussion in the last part, section 6.  
 
2. Distance Measurements  

When clustering data, we want to group together 
observations that are similar. Thus, we need to be able 
to compute the distance between two data objects, but 
it can be defined in many forms. In the following, we 
introduce two major measurements that we used in this 
paper. (Because the gene chips datasets are always in 
high dimensional space, let us assume that we are 
working on n-dimensional data) 
 
2.1 Euclidean distance 
   In two dimensions, it is the length of the straight line 
connection to two points x and y. In n dimension the 
Euclidian distance is defined as: 
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One problem with this method is that Euclidean 
distance is sensitive to large values; in other words, it 
is sensitive to outliers. Besides, it will miss negative 
correlations since they will give large distance.  
 
2.2 Pearson Correlation Coefficient 
  It is a widely used measurement of microarray gene 
expression data defined as follows:  
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Here, x  and y  is the mean of x and y, respectively. 
This looks very daunting but in a sense it just computes 
the ratio between the co-variance of x and y and the 
product of their standard deviations. The correlation 
can be anything from 1 to -1.  It is invariant to scale 
and location of the data points, unlike Euclidean 
distance. However the measurement is still somewhat 
sensitive to outliers. 
 
3. Clustering Methods 

Once we have a set of gene expression or samples, 
we would like to group them together so that genes 
with similar expressions or samples having similar 
conditions are in the same group. This procedure is 
called clustering. Two major categories in this field are 
partition methods and hierarchical methods.      

K-means algorithm is the most widely used method 
in partition category due to its fast speed and easy 
understanding. However, the major disadvantage of 
this method is that the number k is often not known in 
advance. Furthermore, randomly chosen initial points 
may cause two points that are close in distance to be 
determined as two centroids. Also, it is sensitive to 
outliers.  Tamayo et al explain that K-means clustering 
is “a completely unstructured approach, which 
proceeds in an entirely local fashion and produces an 
unorganized collection of clusters that is not 
conductive to interpretation.” (Tamayo 1999) 

After Eisen et al successfully applied hierarchical 
clustering into microarray gene expression data in 
graphic form (Eisen 1998); it has become the most 
popular clustering method in this area.  In this paper, 
we apply agglomerative hierarchical clustering 
(bottom-up) method as our analysis tool. The drawback 
of agglomerative hierarchical clustering is best 
described by Quackenbush: “one potential problem 
with many hierarchical clustering methods is that, as 
clusters grow in size, the expression vector that 
represents the cluster might no longer represent any of 
the genes in the cluster. Consequently, as clustering 
progresses, the actual expression patterns of the genes 
themselves become less relevant” (Quackenbush 
2001). As a result, an active area of research in 
agglomerative hierarchical clustering is in detecting 
when to stop the merging of elements.  
 
4. Our Approach 

Since the weak point of hierarchical clustering is its 
termination, and the problem of K-means is its 
initiation, it is intuitive to combine two methods 
together.   
 
4.1 Naïve Approach 
  At the beginning, we tried to run agglomerative 
hierarchical clustering to get initial information 
(number of cluster and initial seeds location) for k-
means clustering. Every time when bottom-up 
clustering joined two clusters together and computed 
the mean value of each of their attributes as their new 
attributes, we considered the new attribute as our initial 
point for k-means clustering.  If the distance of a new 
point compared with the existing initial points is not 
close to any one of them, then we had a new initial 
centroid; if it is near any one of existing centroids, then 
we computed the mean value of the new attribute with 
the nearest initial point to adjust the initial seed’s 
attribute values. After attaining certain termination 
conditions for hierarchical clustering, we then began k-
means clustering with initial number of clusters and 
locations calculated from hierarchical clustering.  



We tried this method in all possible different stop 
points of hierarchical clustering and then complete the 
following k-means clustering.  Then, we got many 
different clustering results with different number of 
clusters and initial centroids. Afterward, we computed 
the within-cluster distance between any point in the 
cluster and the centroid in correlation coefficient 
(better result if closer to 1), as shown in Figure 1.  The 
results in this method were not always better than the 
original algorithm. We analyzed the member of 
clusters to figure out why good results were not 
generated.  We realized some samples of gene 
expression data clustered together by hierarchical 
clustering did not group together after the following k-
means clustering. It was because at the beginning two 
or more centroids were far from each other, but after 
adjusting their locations they may become closer.  
Thus, a means to merge centroids or some better 
methods may be required to improve this hybrid 
approach 

 
4.2 New Algorithm 

First, we carried out agglomerative hierarchical 
clustering and let the program stop at a certain terminal 
point. From the clusters generated from hierarchical 
clustering, we computed the mean value of each cluster 
as the initial point for k-means to obtain the initial 
centroid.  Also, the number of clusters generate from 
hierarchical clustering is k-mean’s number of clusters.  
After that, we worked on k-means clustering with 
which every cluster MUST at least contain the same 
objects generated from hierarchical clustering.  This is 
due to the fact that hierarchical clustering had already 
put objects that were very close with one another into 
clusters, and the goal of k-means clustering is to put 
close objects together, which is in the same direction.  
Therefore, we can trust the results of hierarchical 
clustering.  Besides, in order to deal with outliers, we 
also set a threshold for k-means: after counting the 
distance with existing clusters, if the shortest distance 
is not further than threshold, we assign the dataset to 
its closest cluster.  If the shortest distance exceeds the 
threshold, it may consider belongs to minor group.   

The objects in the minor group are defined as 
objects that did not belong to any major groups.  It is 
not always outliers, because if the terminal point of 
hierarchical clustering were set too early, then we can 
only get few numbers of clusters.  Thus, there may be 
some objects which were not outliers that did not 
belong to one of the small number of clusters. We can 
also do cluster again in minor group to get more 
information if necessary.  

  The advantage of this method was that people 
didn’t have to choose an arbitrary number of k; instead, 
the user only had to choose the percentage for 

execution of hierarchical clustering (the stop point for 
the first step).  The initial centroids were also 
generated in a much better way. Besides, points close 
to one another wouldn’t be chosen as different 
centroids since they were already clustered together.  
 
(1)repeat 
(2)     find two objects(clusters) with closest distance   
          among all, and cluster them together. 
(3)      the value of attributes of new cluster are the  

   average of attributes of two old objects(clusters); 
(4)until the percentage of hierarchical clusters  
     requested by user is done; 
(5)calculate average attribute values of members of  
     clusters that generate from step (1) to (4) as initial    
     cluster centroids; 
(6)repeat 
(7)      for all objects 
(8)          if the object already appeared in step(2)  
                   then the object remain  in original cluster; 
(9)          else 
                   calculate distances between the object and    
                    existed clusters    
(10)             if the shortest distance lower than    

             threshold  
(11)                  then the object are assigned to the   
                         closest cluster 
(12)              else 
                         the object belongs to minor group       
(13)     end for loop      
(14)     update the centroid attribute value; 
(15)until no member changes belonging cluster; 

Figure 2 H-K-means algorithm 
 
5. Results and Conclusions 
  We applied our new method to Eisen’s yeast gene 
expression data to cluster samples, and we set 0.3 
correlation distance as our outlier threshold. We chose 
Pearson correlation coefficient as our distance measure 
because it is more meaningful in DNA chips data and 
easier to set a threshold to control outliers without 
using any normalization on the distance measured.  We 
also worked on normal k-means clustering with two 
different distance measurements. Comparison was 
shown in Figure 3.  From the figure, our approach had 
better within-cluster distance most of time.  In 
addition, the true power of our algorithm is that objects 
which are close to one another would not be separated. 
Because if objects were close, they would be chosen in 
the hierarchical clustering steps to merge as a cluster.  
The reason our method was slightly worse than k-
means in the end part was that we almost finished 
hierarchical clustering which meant the drawback of 
hierarchical clustering was revealed.  Figure 3 is the 



relation between quality of cluster and percentage that 
hierarchical cluster had completed.  Figure 4 gives the 
relation between numbers of cluster generated and 
percentages that hierarchical clustering had completed. 
  Our approach is very flexible to terminal conditions 
of hierarchical clustering, but there were two things of 
concern: quality of cluster and number of objects that 
belong to minor group.  If hierarchical clustering 
terminates too early or too late, as shown in Figure 3, 
the quality of cluster can not be good.  Besides, if 
hierarchical clustering complete in low percentage 
condition, it will generate only few number of clusters, 
possibly assigning many objects to minor group. 
Figure 5 presents the relation between percentages that 
hierarchical clustering has completed and the number 
of objects belong to minor group. Under this two 
condition and the results we got, we assert that our 
approach could generate better results if we terminate 
hierarchical clustering at around 40% to 60%.  Within 
this criterion, we may obtain well cluster quality and 
few objects belong to minor group.       
 
6. Discussion 
  In this paper, we have proposed a novel clustering 
method for micorarray gene expression data.  Our 
method of automatically finding good initial centroids 
for K-means clustering and dealing with outliers seems 
to provide better performance and more meaningful 
results.  In the future, we will continue working on 
combining hierarchical clustering with other clustering 
methods that required initial information to start, such 
as K-medoid algorithm, genetic algorithm. 
Automatically generate stop point for first step and 
obtain non-spherical shape clusters are two major 
improvable techniques.  We will also apply our 
clustering method to other fields. Both finding 
sequence motif through our clustering method and 
clustering transmembrane prediction classification 
rules are two of our major tasks in the near future. We 
believe the potential for additional progress in this new 
method is strong.  
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Figure 1 Comparison of Naïve approach with normal 
k-means in two different distance measure. 
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Figure 3 Comparison of our H-K-means with normal 
K-means in two different distance measure. 
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Figure 4 the relation between percentage hierarchical 
clustering has completed and cluster quality.    
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Figure 5 the relation between percentages hierarchical 
cluster has completed and generated number of clusters. 
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Figure 6 presents the relation between percentages that 
hierarchical clustering has completed and number of 
objects belong to minor group 
 


