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Abstract

Raising seeds for biological experiments is prone to er-
ror; a careful experimenter will test in the lab to verify that
plants are of the intended strain. Choosing a minimal set
of tests that will discriminate between all known seedlines
is an instance of Minimal Test Set, a NP-complete problem.
Similar biological problems, such as minimizing the num-
ber of haplotype tag SNPs, require complex nondeterminis-
tic heuristics to solve in reasonable timeframes over modest
datasets. However, selecting the minimal marker set to dis-
criminate among seedlines is less complicated than other
problems considered in the literature; we show that a sim-
ple heuristic approach works well in practice. Finding all
minimal sets of tests to identify 91 Zea mays recombinant
inbred lines would require months of CPU time; our heuris-
tic gives a result less than twice the minimal possible size in
under five seconds, with similar performance on Arabidop-
sis thaliana recombinant inbred lines.

1. Introduction

When a plant geneticist wants to conduct an experiment,
she needs samples of a plant. Frequently, she will grow the
plant herself from seeds kept in her laboratory. However,
raising these plants is a labor-intensive, error-prone proce-
dure: seeds can be wrongly sown, fields wrongly marked,
natural pollination occur unintentionally, collected seeds
mislabelled in the field or stored incorrectly in the lab. A
cautious scientist will perform tests on the plants she takes
her experimental samples from to confirm that they are from
the intended seedline.

To verify the genotype of the sample, the scientist selects
markers, extracts DNA from the sample plants, and ampli-
fies each test region; these regions have known detectable
differences in length. In the case of recombinant inbred
lines, there are only two possibilities for each marker, con-
ventionally referred to as size “A” and “B”.

Our poster reports on heuristic algorithms developed to

help minimize the expense of testing. Finding the optimum
set of markers to use is a problem that can take months or
years of CPU time; this software produces near-optimum
answers in under a minute.

The algorithms discussed in our poster have been im-
plemented in Java and are available under an open-source
license at http://www.uncw.edu/csc/bioinformatics/.

2. Heuristic Solution

A randomized greedy algorithm gives a reasonable first
answer for the problem of finding minimal marker sets to
distinguish among the seedlines:

1. Shuffle the markers into a random order

2. Examine each marker in order

(a) Remove it from the set of markers if the resul-
tant set is still able to discriminate among all the
seedlines

In our experiments on Zea mays (134 markers, 91 seed-
lines) and Arabidopsis thaliana (99 markers, 162 seedlines),
this random greedy approach produces answers no more
than twice the size of the theoretical optimum; repeated tri-
als show that the results are roughly normally distributed
(see our poster). If there are N seedlines and M markers,
the theoretical complexity is O(M2N2); the algorithm runs
in seconds on those datasets.

These distributions imply that random sampling of the
search space could yield reasonable results. The quality of
the result of random sampling is very sensitive to the input:
some subsets of the full data have many minimal-length an-
swers, making random discovery likely, while others have
only one. However, in practice they seem to have a large
number of solutions requiring one marker more than min-
imal, which are reasonably likely to be found by random
search. As problems grow larger – more seedlines are de-
veloped and more markers are identified – larger and larger



samples of the search space will be necessary to have a rea-
sonable likelihood of finding a good solution.

Sorting according to simple metrics does not yield any
improvement on random ordering, but provides consistency.
Assigning a large negative value to a marker for every seed-
line about which the marker returns an inconclusive result
gives a coarse ordering. If A and B appear with dissimilar
frequency, adding a small positive value to the marker’s rat-
ing for every seedline on which it returns the less-common
result gives a finer ordering. Neither of these metrics out-
performs random ordering; both typically give a result com-
parable to the median result returned in one thousand tri-
als of random ordering. However, they do so in a single
trial (under five seconds for both Zea mays and Arabidopsis
thaliana), which gives us good input for the second stage of
our algorithm.

We then filter the data. If the initial greedy heuristic re-
turns a solution S containing K markers, we run the greedy
algorithm K additional times. Let Si be the ith marker in
S; on the ith additional execution in this filtering pass, we
remove Si from the set of possible markers.

Whether we start with a random or sorted list of mark-
ers, running the basic greedy algorithm and then one pass
of filtering gives us an answer of the same size as the best
answers ever returned by the randomized algorithm. Addi-
tional passes of the filtering algorithm do not yield further
improvement. For both Zea mays and Arabidopsis thaliana,
this is roughly one point five times the length of the smallest
possible answer.

In essence, this algorithm performs a heuristic search
of the M -dimensional space of possible answers to find
a candidate answer, and then exhaustively explores its K-
dimensional immediate neighborhood looking for a local
minimum. We find that the solution initially reported by
the greedy heuristic is rarely a local minimum, but that it
consistently has an adjacent local minimum. Over the data
currently available, the two-stage approach gives reliably
good results about a minute.

3. Exact Solution

A heuristic solution to the problem is not strictly nec-
essary. The minimal discriminating set of markers can
be found by examining all potentially discriminating sets.
However, this requires an exhaustive search over a large
search space.

For N seedlines and M markers, there are
(

M
J

)
sub-

sets of markers of size J . For each subset that we exam-
ine, a straightforward determination of whether the subset
distinguishes between each pair of seedlines takes O(JN2)
time. The total predicted time is O(MKN2K), where
K is the size of the minimal discriminating marker set;
K >= log2(N).

To verify this O() characterization, we implemented an
exact solver for the minimal discriminating marker set prob-
lem and ran it over subsets of the Zea mays data. Graphs of
the time performance of the exact solver can be found on
the poster. A trial run of the exact solver on a dedicated
2.4 GHz Xeon CPU examined only 1.33% of the possible
size-7 solutions for Zea mays in 17.5 CPU hours; if there is
a size 7 answer, it would take us 54 days to find.

4. Theory and Context

Finding the minimal discriminating set of markers is an
instance of a well-known NP-complete problem, Minimal
Test Set [1]. In Garey and Johnson’s formulation, the asso-
ciated decision problem is:

INSTANCE: A collection C of subsets of a finite
set S, a positive integer K ≤ ||C||.
QUESTION: Is there a subcollection C ′ ⊆ C
with ||C ′|| < K such that for each pair of distinct
elements u, v ∈ S, there exists some set c ∈ C ′

that contains exactly one of u and v?

[3] is a comprehensive survey of approaches to the Minimal
Test Set problem.

This problem looks similar to another question intensely
studied in bioinformatics, Haplotype Tag Selection. Al-
though the decision problems are only subtly different, this
difference significantly increases the complexity of algo-
rithms that solve Haplotype Tag Selection. Approaches like
ours to Minimal Test Set are not sufficient to solve Haplo-
type Tag Selection.

[2] is a survey of current work on Haplotype Tag Selec-
tion. The authors fit 21 published Haplotype Tag Selection
algorithms into a three-stage framework: evaluating each
SNP for how well it describes other nearby SNPs, evaluat-
ing a candidate set of SNPs for how well they classify the
entire set of data, and constructing a final minimal set of
SNPs. Our algorithm performs three analogous activities,
albeit in a different order: filtering to minimize the set of
results, sorting metrics, and a greedy minimization phase.
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