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Introduction.  In mass spectrometry (MS) based proteomics research, only the spectral peaks are 
biologically relevant in analysis applications such as biomarker discovery and disease classification. The 
number and locations of peaks in different spectra are very likely to be different given the noisy nature of 
biological samples and variations of MS data acquisition conditions. Aligning peaks across multiple 
spectra and determining their locations is therefore an important task as all comparisons and biologically 
significant conclusions are based on the alignment results. Due to the fact that the shift curves of different 
peaks are non-linear, however, peak alignment still remains challenging even after instrument calibration 
with internal markers. To address this problem, different methods have been proposed. When we have 
only two peak sets, dynamic programming [1] and parametric warping [2] based approaches are suitable.  
But when we have multiple peak sets, we cannot use the pair-wise peak alignment algorithm repeatedly 
to build a unique mutual correspondence among multiple peak sets since we do not know the standard 
peak set. If we arbitrarily choose one peak set as the standard, the final correspondence may vary when 
we use a different peak set as the standard, causing an ambiguity problem. In other words, the major 
difficulty in multiple peak alignment is to estimate the unknown number and locations of standard peaks. 
Recently, the hierarchical clustering method [3] has achieved certain degree of success in aligning 
multiple peak sets. But this method still has a few limitations: 1) We have to manually determine a cut-off 
parameter during the construction of a standard set.  2) The clustering result is sensitive to the existence 
of outliers. 3) The clustering method does not use intensity values, which is a valuable source of 
information. These limitations motivated us to propose a scale-space based approach [4] to tackle the 
multiple peak alignment problem.   
 
Method. We considered detected peaks as observed values of the unknown standard peaks and 
assumed locations of detected peaks follow a Gaussian distribution with mean equal to the locations of 
standard peaks (This assumption is based on the central limit theorem, which is valid for relatively large 
number of spectra (such as 50)). We represented detected peaks as a set of Dirac components with 
different locations and weighting coefficients. Then, we convolved these peaks with a set of Gaussian 
functions (with zero mean and varying standard deviation σ) to form a two-dimensional scale-space 
representation (figure 2 left). The problem of estimating unknown number of sample means was then 
converted into a simpler problem of searching for local maxima in the scale-space representation. Once 
the scale parameter was estimated, we obtained a standard peak set by simply searching for the local 
maxima at the corresponding scale level and counting the number of these local maxima. A nice point of 
the scale-space approach is that we can use a parameter optimization scheme to avoid the manual 
determination of the scale parameter σ.  Concretely, we minimized a distance-based energy function, 
which consists of a data-fitting term (which is the sum of squared distance between standard peak set 
components and detected peaks) and a regularization term (which reflects our belief on the most suitable 
value of σ and penalizes deviations from this value). Different forms of the regularization term can be 
used. For simplicity, here we assumed that the best scale follow a Gaussian distribution in the scale-
space (i.e. there is no negative scale parameter) with its mean and variance determined by neighboring 
peak distances from the data. After estimating the standard peaks, the remaining problem of building a 
standard peak set-based mutual correspondence among multiple spectra can be solved using either 
dynamic programming, parametric warping, or even a simple closest point matching approach. Here we 
used a closest point matching approach.    
 
Preliminary Result.  We used a simple example with known ground-truth to compare the performance of 
our scale-space approach with a current hierarchical clustering method. Figure 1 shows the distribution of 
peaks from 50 peak sets with some noise points added (marked as red circles). Here we would check if 
the number and locations of 20 true peaks can be correctly estimated using both methods. For 
quantitative comparison, we also defined a measure called average distance as: 



                                                                  
Here di,j denotes the distance between the i-th peak in the j-th sample and its closest peak in the standard 
peak set, Kj indicates the peak number in the j-th sample, and M represents the total number of peaks in 
N samples. Intuitively, a smaller Dav indicates a better standard peak set. When we used the hierarchical 
clustering method, we had to manually determine the cut-off parameter and the result was sensitive to 
noise (figure1). In contrast, the scale-space approach provided reasonable results (figure 2).  The 
average distance values in table 1 also gave an quantitative comparison.  

                                                                                       
 

                                                                     

                                                                                         
 
 
 
 
Conclusion.  We proposed a scale-space approach to automatically align multiple MS peak sets without 
manual parameter determination. It is more robust against noise than the hierarchical clustering method. 
In addition, it is possible to embed intensity information into the alignment framework, thus generalizing 
current approaches that use only the m/z information during the alignment of peaks. Our tests showed 
that this generalization brought some extra advantages for peak alignment, although we did not show 
concrete examples here due to the space limitation.   
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Figure 1: Multiple peak alignment using the 
hierarchical clustering method. Top Left: Simulated 
peak distribution. Circles denote noisy points. Top 
Right: Cluster number vs. the cut-off height in the 
hierarchical clustering method. Bottom Left: 
Estimated cluster centers (circles) vs. ground truth 
(stars) when the cut-off height equals 15. A mistake 
is shown in the black box. Bottom Right: 
Estimated cluster centers (circles) vs. ground truth 
(stars) when the cut-off height equals 17. Two 
mistakes are shown in black boxes.  

Figure 2: Left: Two-dimensional scale-
space representation of all peaks. 
Middle: Energy function value vs. σ 
value.  Right: Relative estimation error 
of 20 peak locations (normalized by the 
true locations).  

Table 1: Dav  values for peaks shown in figure 1. 
While both the hierarchical clustering method and 
the scale-space approach provide similar Dav 
values for the peak distribution without noisy 
points (without  circles), the scale-space provides 
a smaller Dav value if noisy points (circles) are 
added (row 2).   
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