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Abstract 
 

Microarray experiments are characterized by a 
massive amount of data, usually in the form of an image. 
Based on the nature of microarray images, we consider 
the microarray in terms of its structure and statistics. 
Based on the microarray image model, we propose a 
context-based method for lossless compression of 
microarray images using prediction by partial 
approximate matching (PPAM). In synchronization 
experiments, the raw data consists of two channel 
microarray images. The correlation between these two 
channel microarray images is explored in order to 
improve the compression performance. Our results show 
that, the proposed approach produces a better 
compression result when compared with results from the 
best-known microarray compression algorithm. 

 
1. Introduction 
 

It is now common to use microarrays for genome-
wide monitoring of gene function and gene expression 
under different conditions. Evidently, the result of such 
large-scale experiments will be a massive amount of data. 
For instance, Spellman et al [27] reports of over 400,000 
points of measurements in their experiments with S. 
Cerevisiae. Thus, there is an immediate challenge to find 
efficient and effective methods for managing the 
unprecedented volume of microarray image data [2].  

The problem of storage for the microarray data is 
compounded by the need to store both the semi-processed 
data (example the expression ratios) used for analysis, 
and the original expression levels (from the Cy5 (Red) 
channel for reference conditions and Cy3 (Green) 
channel for experimental conditions). These original 
expression levels are required to be stored in the event of 
a possible need to re-analyze or revalidate the microarray 
data in future. Similar to the data explosion problem in 

DNA sequences, the growth of microarray data over time 
has been observed to be exponential1.   
     The rest of the paper is organized as follows. In 
Section 2, we describe the special nature of microarray 
images, and propose a component-based model for 
microarray images. Section 3 describes our proposed 
schemes for compressing microarray images. Section 4 
presents experimental results on compression using real 
microarray images. Section 5 concludes the paper. 
 
2. Nature of microarray images 
 
2.1. Formation of microarray images 
 

To understand the nature of microarray images, it may 
be useful to have some basic idea of the processes 
involved in the formation of such images. The detailed 
descriptions can be found in [1, 8, 15]. The basic steps 
are as follows: (i) Isolate single stranded mRNAs from 
the cell or tissue and use these to generate sets of cDNAs. 
(ii) Using florescent labeling, attach tags to each mRNAs, 
to differentiate the mRNA molecules from the control 
(reference) cell (Green dye) and those from the 
experimental cell (Red dye). (iii) Mix the labeled samples 
and incubate in a hybridization solution with the cDNA 
samples already immobilized on the microarray spot. (iv) 
Using a reader or scanner, detect the mRNA abundance 
in each spot. (v) Based on the florescent tags, create 
digital images indicating the respective expression levels 
for each of the differently tagged molecules. The result is 
a set of two intensity images, one for the expression level 
of the reference (control) tissue/cell (the Cy3 or the 
Green channel), and the other for the sample 
(experimental) tissue/cell (the Cy5 or the Red channel). 

Depending on the spacing between the spots and the 
overall size of the microarray, this procedure allows for a 
potentially high density of spots on the array (hence 

                                                           
1 For example, see 
http://www.ncbi.nlm.nih.gov/Class/NAWBIS/Modules/Expressi
on/exp45.html . 



larger images), making it possible to measure expression 
profiles for tens of thousands of genes simultaneously.  
To capture the large range of possible expression levels, 
the intensities are usually represented as a 16-bit integer. 
With pixel spacing of about 2 microns per pixel, at 16 
bits per pixel, image sizes of up to 50MB are common 
[8]. For genome-wide expression analysis, with say 
20,000 genes under 5000 experimental conditions, we are 
looking at about 191MB per image per channel.  

 
2.2. Microarray image model 
 

Our image model is simple. We consider the 
microarray image in terms of its structure and statistics. 
For the structural model, we use a simple two-component 
model. The first component is the foreground, obtained 
using a spot segmentation procedure [8, 12]. We call the 
remaining areas the background. After identifying all the 
spots and their respective dimensions, we form the 
foreground image by rearranging the spots into an image, 
but without the previously adjourning background.  
Similar to the foreground, we rearrange the remaining 
parts of the microarray into the background image. With 
the foreground image, we may or may not be able to 
visually distinguish between the spots. However, in 
general, pixels in the foreground image will have 
relatively high intensity values. 

To capture the different statistical nature of the two 
components, we describe the overall microarray image 
using a mixture model. Given { }∑=∑ xxx ,...,, 21 , the set 

of symbols representing the distinct pixel values that 
appeared in the microarray image, we use a mixture 
model to describe the probability of occurrence of 
symbol x in the microarray image: 
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where )(0 xP is the model of the background, )(xPi  
mi ,...,2,1= are the m mixing components, and iw ’s are 

the weights. The mixing components could depend on the 
spots, and/or some other considerations. It was also 
observed that the distribution of the background image 
could be further modeled by some mixture model. For the 
mixing components, we assume that they are independent 
but identically distributed, with different parameters. 
Based on empirical observations, we model the 
foreground and the background using the gamma 
distribution: 
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where iβ  and iα  are scale and shape parameters 
respectively, with 0>iβ , 0>iα  and (x) is the gamma 
function of x,  given by:  
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Thus, the different spots could exhibit a different 
distribution, based on their scale and shape parameters. 
This flexibility in the model is important, especially in 
capturing the longer tails exhibited by some spot 
distributions. By simply changing the parameters, we can 
obtain different distributions, such as the exponential 
distribution. We notice that the foreground and 
background components have evidently different 
distributions. In empirical fitting of the probability, we 
use a further scale factor on the )(xPi  above to obtain 

)(.)( xPxP iii θ=′  as the final probability, with 0>iθ . The 
parameters of the distribution can be estimated using 
standard methods [9]. However, the initial estimates will 
usually not give the best results. We suggest an iterative 
approach, whereby the initial estimates can be refined by 
iteratively fitting the distribution on the data, until one 
with the best fit is obtained. The criteria for best fit could 
be based on quantitative measures, such as the mean 
square error, or the relative entropy. 
 
3. Microarray image compression 
 
3.1. Context-based lossless image compression 
 

Different methods have been proposed for 
compressing microarray images. For instance, SLOCO 
[7], provided a simple extension of LOCO [13], the basic 
algorithm used in JPEG-LS by including summary 
information about the microarray and the spots. In [5], a 
spiral scanning method was proposed based on the 
circular nature of the spots. Clearly, this approach will 
only work well for first-order contexts, where pixels are 
predicted by their immediate neighbor in the scanning 
path. In [6], wavelet-based lossy and lossless 
compression schemes were proposed for microarrays, 
using one level of decomposition. The lossless 
compression resulted in an expansion (16.22bpp) rather 
than compression of the microarray data. MicroZip [10] 
used arithmetic coding and the Burrows-Wheeler 
Transform (BWT) for lossless compression of microarray 
data, after dividing the pixel values into their least 
significant bits (LSB) and most significant bits (MSB). 
Their method produced comparatively superior results in 
lossless compression. 



 
 
 
 
 
 
 
 
 
 
In this work, we focus on lossless compression of 

microarray images. We start by considering approaches 
that have been successful in compressing natural images. 
Most successful lossless image compression algorithms 
are context-based and they exploit the two-dimensional 
spatial redundancy in natural images [11, 14]. The basic 
motivation for context-based approaches is the promise 
of improved compression. Let an image be represented 
by a sequence { }SisS i ,...,1, == , with symbols taken 

from a fixed alphabet, { }Σ==Σ ,...,1,iiσ . Σ is typically 
the set of distinct pixel gray levels in the image, or the set 
of distinct prediction errors, after applying some 
prediction scheme. Let the corresponding symbol 
probabilities be ( ) Σ= ,...1, ip iσ . Then the minimum 
number of bits required to encode the image without 
context modeling is the entropy of the source ( )SH : 
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If contexts are considered, the conditional probability 
distribution for the set of symbols '

jS  with context jC  

will be ( ) ',...1,| jji SiCsp = , and the minimum bits used 

to encode the source should be: 
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where M is the total number of contexts. Since 
conditioning reduces entropy, the number of bits needed 
to encode the image is also reduced by using context 
modeling: ( ) ( )SHCSH ≤| . 

Although the lossless image coding algorithms are 
based on some form of contexts, they always tend to use 
fixed-order contexts, which may limit their ability in 
estimating the conditional probability distributions. Our 
approach to microarray image compression is based on 
the recently proposed PPAM – prediction by partial 
approximate matching [16]. PPAM is an image 
compression technique, which extends the PPM text 
compression algorithm [3, 4] by considering the special 
characteristics of natural images. PPAM introduces two  

 
 
 

 
 
 
 
 
 
 
 
 
 

important concepts in image compression: the use of 
variable-order contexts, and the use of approximate 
contexts [16]. 

 
3.2. Microarray image compression by PPAM 
 

Given the data sizes involved, compression is 
mandatory in efficient storage of microarrays. The 
requirement for efficient storage is worsened by the need 
to store the ratio image, sometimes along with the Cy5 
and Cy3 channels. Compression of microarray images is, 
however, a tough challenge. Various characteristics of 
microarrays make them difficult to compress, most 
notably the noise and spots (random edges) in the 
microarray image. In terms of computation, the high 
resolution typically required for microarrays is also an 
issue for the potential number of contexts, and the 
attendant computations required (Some of our test images 
are 5496×1956, at 16-bit resolution). Because of the high 
bit depth, microarrays are often split into two eight-bit 
images, one part for the 8 most significant bits (MSB), 
and the other for the 8 least significant bits (LSB). 

Fig. 1 shows a general block diagram for the 
proposed approach. Given the component-based 
microarray image model, the first step is to partition 
microarrays into its different components. We record 
important information about the microarray image in 
general, and each spot in particular as summary 
information. The summary information includes the 
image dimensions, the center location for each 
recognized spot, the mean and median intensity value 
within each spot, the spot dimensions (in terms of the 
radius of the bounding circle), etc. The summary 
information is compressed without loss and stored 
independently. This means that the summary information 
can be extracted and used independently for further 
analysis, without needing a full decompression. The 
foreground part of the image is also compressed without 
loss. The background part can be compressed with or 
without loss, since a certain loss of the background 
information may not affect the analysis of the microarray 
sequences. 

For each component, we apply the PPAM algorithm 
independently. With each component, we further 
partition the pixel representation into its MSB and LSB 
(similar to previous methods). Then to compress the data, 
we first pass the MSB through an error prediction 
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Figure 1: Microarray image compression scheme. ARI stands for arithmetic coding. 



scheme, and then feed the prediction residuals to the 
PPAM context model and encoder. For the LSB, given 
that prediction often increases the entropy, attesting to its 
random nature, we do not perform prediction. Rather, we 
feed the LSB part directly to PPAM context model and 
encoder.  
 
3.3. Correlation between two-channel images 
 

As previously mentioned, in synchronization 
experiments, microarray data are obtained from 
synchronized cells and suitable controls. Fluorescently 
labeled cDNA is synthesized using Cy3 ("green") for all 
controls and Cy5 ("red") for all experimental samples. 
Thus the raw data files consist of two channel images. If 
we can identify some correlation between the two 
channel images, we can then reduce the uncertainty in the 
images (thus improving the overall compression) by 
exploiting the correlation. Fig 2 shows the image 
histograms of the MSB part of the two channel images 
from the same microarray. In Fig 3, the scatter plot shows 
the correlation between the histograms of the two 
channels. From Fig. 2 and Fig. 3, it is obvious that there 
is a strong correlation between the green and the red 
channel images. In this project, we explore the potential 
correlation-based compression improvement by simply 
considering the compression of the difference between 
the two channel images, instead of coding “green” and 
“red” channels separately. Define the difference image 
chd as: chd=ch1-ch2, where ch1 and ch2 represent the 
corresponding channel images respectively. The chd 
image is more suitable than ch1 or ch2 for compression. 
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4. Results 

 
4.1. Setup and data sets 
 

The experiments were performed in a MATLAB 6.5 
environment, running on a PC with Pentium IV, 2.8GHz 
with 512MB. We used the three test images (labeled 
Array1, Array2, and Array3) that were used in 
evaluating MicroZip [10]2. We also downloaded images 
from the Stanford Yeast Cell-Cycle Regulation Project 
data set3. We used three images from the Pheromone data 
set. The images are of size 1024×1024 each, and are 
labeled y744n40, y744n100, and y744n101, 
respectively.  
 
4.2. Compression results 

 
 
 
 
 
 
 
 
 
Table 1 presents the compression performance using 

the proposed method on the three microarray images used 
in MicroZip. We note in particular that the proposed 
methods can compress the LSB, paving the way for 
lossless compression at rates less than 8bpp, for an 
original 16-bit microarray image. Table 2 shows the 
comparative coding performance of PPAM with state-of-
the art compression algorithms. The cost of the header 

                                                           
2 http://www.cs.ucr.edu/~yuluo/MicroZip/ 
3 http://cellcycle-www.stanford.edu/ 

Figure 2: Channel histograms (MSB)
for a sample microarray image 

Figure 3: Scatter plot for MSB part 
for sample microarray image  

Table 1. PPAM performance 
Image    Results  Overall 
Array1LSB 8.010 
Array1MSB 3.370 

11.380

Array2LSB 7.870 
Array2MSB 1.391 

9.260 

Array3LSB 7.460 
Array3MSB 0.663 

8.120 



(summary) information is not included in the tables. On 
average, the extra cost required to store the summary 
information in a lossless manner was about 0.04bpp. 
Table 3 is shown that the correlation-based compression 
method has reduced the overall compression result by 
0.569 bits per pixel for the test microarray images. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
5. Conclusion 
 

Given the amount of data typically generated by 
microarray based experiments, there is need to find 
methods to store the generated data efficiently. In this 
work, starting with the nature of microarray images, we 
have proposed a simple model that captures both the 
structure and the general statistics in microarray images. 
Based on the model, we further proposed a method for 
compression of microarray images. The compression 
scheme is unusual in its use of approximate (rather than 
exact) contexts in modeling the symbol probabilities. The 
results showed that the proposed methods produced 
superior results in terms of compression performance.  In 
particular, in compression of test 16-bit microarray 
images, the proposed method produced smaller overall 
bits per pixel when compared with MicroZip, the best-
known microarray compression algorithm. 
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Table 3. Compression results on two channel 
microarray images 
Image  ResultsOveralImage  Results Overall 
Ch1LSB 4.582 Chd 5.488 
Ch1MSB2.318 

6.900 
Chd(Sign) 0.843 

6.331 

Ch2LSB 4.581 Ch2LSB 4.581 
Ch2MSB1.720 

6.301 
Ch2MSB 1.720 

6.301 

Table 2. Comparative results for different  
methods on test microarray images 
Image  PPAM PPMD BWT MicroZip JPEG-LS
Array1  11.380 11.550 11.739 11.490 11.834 

Array2  9.260 9.440 9.776 9.570 9.788 

Array3  8.120 8.140 8.542 8.470 8.256 
 


