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Abstract 
 
This study is concerned with predicting Translation 
Initiation Sites (TIS) in the human genome that start 
with the nucleotide sequence ATG. This sequence 
occurs 104 million times in the entire genome. 
However, current estimates predict that there are only 
about 30,000 or so TIS in the human genome, giving 
an imbalance ratio of about 1:3500 for TIS ATG vs. 
non-TIS ATG sites. Algorithms that are designed using 
datasets that have low imbalance ratio may not be well 
suited to predict TIS at the genomic level. In this 
paper, we modified the SVM algorithm that can handle 
moderately high imbalance ratio. The F-measures for 
other approaches were: Linear Discriminant 0%, SVM 
with under-sampling 4.1%, SVM with over-sampling 
8.2%, Neural Network 13.3%, Decision Tree 20%, our 
approach 44%. This shows how poorly standard 
approaches perform at the genomic level due to the 
high imbalance ratio. Our approach improves the 
performance significantly. 

  
 
 
1. Background 
 
This study is concerned with predicting Translation 
Initiation Sites (TIS) in the human genome that start 
with the nucleotide sequence ATG. Accurate 
prediction of TISs will aid in the discovery of new 
genes in the human genome by providing a starting 
point where protein translation begins. The vast 
majority of these sites start with the sequence ATG, 
while a small number of non-ATG TISs also exist [4]. 
In this study, we will only focus on ATG TISs. Most 
previous researchers in this field also restricted 
themselves to ATG only TIS [2, 9, 10, 11]. 

Previous work in TIS prediction mostly deals 
with predicting TIS in Expressed Sequence Tags 
(EST), mRNA sequences, or cDNA sequences [2, 9, 
10, 11, 13, 14]. One of the most popular datasets used 
for this purpose is the Pedersen and Neilsen [9] dataset 
that contains data derived from mRNA sequences from 
vertebrates. In this dataset, the sequence ATG occurs a 
total of 13375 times, out of which 3312 are TIS ATG 
while 10063 are non-TIS ATG sites. This gives an 
imbalance ratio of only about 1:3 for the total number 
of TIS ATG vs. non-TIS ATG sites. 

By contrast, we have found that the sequence 
ATG occurs about 104 million times in the entire 
human genome. This figure was obtained by scanning 
the human genome data available from the National 
Center for Biotechnology Information (NCBI) [6]. 
However, current estimates of the number of genes 
present in the human genome vary from about 30,000 
to 40,000 genes [8]. Assuming most of these genes 
have TISs that start with ATG, this means that we can 
expect an imbalance ratio of about 1:2600 to 1:3500 in 
the human genome. Consequently, algorithms that 
trained on the Pedersen and Nielsen [9] dataset may 
not be directly applicable to TIS prediction at the 
genomic level. 

Unfortunately, current Machine Learning (ML) 
algorithms do not perform well if the imbalance ratio 
exceeds about 1:10 [3] (in the remainder of this paper 
we will refer to the positive class as the minority class 
and the negative class as the majority class). Since ML 
algorithms are usually designed to maximize the 
overall accuracy on the dataset, most ML algorithms 
have a tendency of classifying a vast majority of 
instances as negative. This generates a lot of false 
negatives deteriorating the recall. Specifically, Support 
Vector Machines (SVM) usually end up classifying 
everything as negative and, therefore, have zero recall 



and precision. In our research we modified the basic 
SVM algorithm in order to improve its performance on 
highly imbalanced data. Because an imbalance of over 
1:1000 is well beyond the performance capabilities of 
any ML algorithm, we decided to generate the TIS data 
from the human genome with an imbalance of 1:100 
for our current scheme. Even this ratio causes most ML 
algorithms to perform very poorly, as our results below 
indicate. In the future, we hope to enhance our 
technique even further to handle larger imbalance 
ratios. 
 
2. Our Method 
 

Our first strategy was to construct a dataset 
containing sequences from the human genomic data 
and then use it to generate several candidate features 
for our algorithm. We then used feature selection 
algorithms to select the best attributes from among 
them. This technique was originally proposed by Zeng 
et al. [13]. To begin with, we randomly chose known 
ATG TIS sites from the NCBI database for our 
positive examples. Then we randomly picked ATG 
sites from the genome that are not known to be TIS 
sites, for our negative examples. We maintained a ratio 
of 1:100 for positive to negative examples. A window 
of 200 nucleotides was chosen for every example, 
running from 100 bps upstream of the ATG to 100 bps 
downstream of the ATG. This set constituted our raw 
dataset. 

From this raw dataset, we generated several 
features. Every position in the raw data was used as a 
candidate feature. In addition, we generated the 
frequency of occurrence of all possible monomers, 
dimers, trimers, all the way up to hexamers that lie 
upstream of the ATG and also for those that lie 
downstream of the ATG. This gave us a total of 11120 
features. Then we ran several different feature 
selection algorithms on this large set of attributes to 
determine the top attributes. We ran the Correlation 
Feature Selection (CFS) algorithm, which prefers those 
set of attributes that have a high correlation with the 
class label, but low correlation among themselves, and 
also Information Gain, Gain Ratio, and chi-squared 
test. By observing their results, we were able to choose 
the top 15 of the 11120 attributes, which were found to 
be the following (in order of importance): dn-CG, dn-
TA, dn-AT, up-AT, up-CG, dn-GC, dn-G, up-TA, dn-
CGG, up-CGG, dn-T, dn-ATT, pos -3, pos -1, pos +4, 
where dn-CG means the frequency of occurrence of 
CG downstream of the ATG, and up-CG means the 
frequency of CG upstream of the ATG, pos -3 means 
the nucleotide at position -3. Although we found pos -
3, pos -1 and pos +4 to be the most important 

positions, the relevance score for these was much 
lower than the relevance score for the frequency 
counts, but we included them in our experiments 
nevertheless. It should also be noted that these 
positions correspond to the Kozak consensus sequence 
[4]. Our final dataset consisted of these 15 selected 
features. We used a similarly generated separate test 
set for evaluation. 

For our algorithm, we modified the basic SVM 
algorithm by first generating several synthetic minority 
instances [1]. This was done by repeatedly randomly 
selecting two neighboring positive instances using the 
Euclidean distance measure and then generating a new 
instance that lies somewhere randomly in between 
these instances. The underlying assumption is that the 
space between two positive neighboring instances is 
assumed to be positive. We found this assumption to 
hold for our dataset. In this way we synthetically over 
sampled the minority class. We found that over 
sampling in this way was much more effective than the 
traditional over sampling technique of simply 
generating multiple identical copies of existing positive 
instances. 

Our next strategy was to bias the SVM classifier 
so that it would be more inclined to classify instances 
as positive. One reason why SVM performs poorly on 
imbalanced data is that it tends to create a decision 
boundary that lies well inside the positive “space.” By 
biasing the algorithm, we intended to push the 
boundary away from the positive space and closer to 
the ideal boundary that separates the positive from the 
negative instances. We accomplished this bias by 
increasing the relative penalty associated with 
misclassifying a positive instance as compared to a 
negative instance [12]. By varying the degree of over 
sampling and also the relative cost factor, one can 
obtain different values of recall vs. precision. The 
algorithm can be fine tuned to increase one measure 
relative to the other. 

 
3. Results 
 

We compared our algorithm with several other 
standard ML algorithms for predicting TISs in the 
human genome. We also compared our technique with 
the common approach of over sampling the minority 
class or under sampling the majority class in order to 
reduce the imbalance ratio in the dataset prior to 
training. For evaluation, we used the F-measure as our 
metric, which is the harmonic mean of the recall and 
precision. The results are shown in the following table: 

 



 
 

As mentioned previously, by varying the parameters of 
our algorithm we are able to obtain different recall and 
precision values. Some examples of recall/precision 
obtained respectively are: 15%/100%, 29%/95%, 
85%/4%. Thus, depending on the application the 
algorithm parameters can be varied to obtain the 
desired level of recall vs. precision. 
 
4. Conclusion 
 

The results in the table above show how poorly 
standard ML approaches perform for predicting TISs at 
the genomic level due to the high imbalance ratio. Our 
approach improves the performance significantly and 
in future we hope to enhance our algorithm further to 
handle even higher degrees of imbalance. 
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Algorithm F-measure 
Voted Perceptron 0 

ZeroR 0 
SVM 0 

SVM with Under Sampling 0.041 
SVM with Over Sampling 0.082 

Neural Network 0.133 
AdaBoost with C4.5 0.148 
3 Nearest Neighbors 0.182 

Decision Tree 0.2 
Naïve Bayes 0.205 

Bagging with C4.5 0.25 
Our Algorithm 0.44 


