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Abstract 
 

Large amounts of protein-protein interaction data 
have been identified using various genome-scale 
screening techniques. Although interaction data is a 
valuable resource, high-throughput datasets are prone 
to higher false positive rates.  

We developed a new reliability assessment system 
for protein-protein interaction dataset of yeast that can 
identify real interacting protein pairs from noisy 
dataset. The system is based on a neural network algo-
rithm, and utilizes three characteristics of interacting 
proteins: 1) interacting proteins share similar func-
tional category, 2) interacting proteins must locate in 
close proximity, at least transiently, and 3) an interact-
ing protein pair is tightly linked with other proteins in 
the protein interaction network. 

The statistical evaluation of the neural network 
classifier by 10-fold cross-validation shows that it 
performs well with 96% of accuracy on the average. 
We experimented our classifier with pure 5,564 
interactions. The classifier distinguished the yeast two-
hybrid dataset into 2,831 true positives and 2,733 false 
positives.  
 
 
1. Introduction 
 

One of the key issues in proteomics is the analysis 
of protein-protein interactions (PPI). PPI knowledge is 
the fundamental basis of studying cellular process and 
mechanism of disease, and is especially useful in 
predicting unknown functions of protein [1-3]. PPIs 
have been studied individually to elucidate the 
mechanism of focused process. Recently, large quanti-
ties of protein interaction data are collected due to the 
evolution of high-throughput experiments. They 
include genome-scale Yeast Two-Hybrid assays (Y2H) 
[4,5] and mass spectrometry methods [6,7].  

Vast amount of data produced by high-throughput 
experiments allow for efficient identifications of 

unknown PPIs information. However, they are prone to 
higher false positive rates than small-scale studies [8-
10]. von Mering et al. estimate that approximately half 
the interactions obtained from high-throughput data 
may be false positives [8]. Containing false positive 
data requires an additional task to validate the 
reliability of each candidate PPI pair.  

The intersection of multiple high-throughput PPI 
datasets can be effective in obtaining more credible 
interacting protein pairs. However, the coverage of 
intersection is very small in the huge amount of PPI  
dataset [8]. Some studies have been made on the 
assumption that interacting proteins whose transcripts 
being co-expressed are more likely to be credible 
[11,12]. However, recent research shows that interac-
tions in genome-wide datasets have only a weak 
relationship with gene expression owing to different 
degradation rates [13,14]. These methods need whole 
genome-scale PPI dataset to assess the reliability of 
each PPI pair. Moreover, it is very ambiguous for 
biologists to define the cutoff value to classify between 
true positives and false positives. Hence, a new model 
to assess the reliability of individual protein interaction 
pair is needed.  

In this paper, we developed a new reliability assess-
ment system for PPI dataset that can distinguish real 
interacting protein pairs from noisy dataset. The 
system uses a neural network algorithm based on the 
three characteristics of interacting proteins. First, 
interacting proteins share similar functional category. 
Second, interacting proteins must locate in close 
proximity, at least transiently. Third, an interacting 
protein pair is tightly linked with other proteins in the 
protein interaction network. We use these three 
characteristics in the classification scheme to assess the 
reliability of PPIs.  

The rest of this paper is organized as follows. 
Section 2 presents the system architecture and methods 
for assessing the reliability of PPIs. Section 3 shows 
the analytical results of the proposed system, and 
finally we conclude the paper in Section 4.  



 
2. System Architecture 
 

To separate true positives and false positives from 
putative PPI dataset, we have developed a classifica-
tion system based on the neural network algorithm 
(Figure 1). Our classification system consists of a PPI 
database with attributes annotated, a computation 
module for each PPI pair, a neural network algorithm 
for filtering false positives, and a PPI classifier 
generated by the algorithm.  

 

 
Figure 1. System architecture for classification 
of high-throughput PPIs into true positives 
and false positives. The solid line means the 
workflow of the classifier construction and the 
dotted line represents the workflow of the 
classifying PPI data. 
 
 
2.1. Dataset 
 

Our system first trains from a collection of protein 
pairs and their attributes. The training database consists 
of the true positive PPI dataset from Munich Informa-
tion Center for Protein Sequence (MIPS) [15] and the 
false positive PPI dataset from Bader et al.’s work 
[16]. MIPS PPI dataset is usually regarded as a trusted 
PPI reference. We select more reliable true positives 
from MIPS dataset whose confidence scores by Bader 
et al. are more than 0.5 (3,231/15,628 pairs) and false 
positives from Bader’s dataset with the confidence 
score of less than 0.2 (4,061/47,783 pairs) without 
redundant pair. The Bader et al.’s confidence scores 
were examined by statistical and topological correla-
tion between the paired proteins in protein interaction 
networks constructed from published Y2H and Co-IP 
data using logistic regression model [16]. 
 
2.2. Computation of PPI attributes 

 

The “computation of PPI attributes” module 
calculates three attribute values for the training PPI 
database, namely, similarity of functional category, 
possibility of co-localization, and topological proper-
ties within the interaction network structure. 

 
2.2.1. Similarity of functional categories. Since most 
proteins function within complexes, interacting 
proteins share similar functional category. The 
similarity of functional category between interacting 
proteins is calculated based on the functional category 
(FunCat) of MIPS database [15,17]. The FunCat is 
described with a hierarchical tree structure (Figure 
2(a)). It consists of 28 main functional categories with 
up to six levels of increasing specificity. A unique two-
digit number is assigned to each category hierarchy. 
The levels of categories are separated by dots (eg. 
01.01.03.02.01). The similarity of the functional 
category between two interacting proteins is 
determined by the level of the Lowest Common 
Ancestor (LCA) of the two proteins. Higher level of 
LCA implies more similar functional category. Since a 
majority of proteins are included in more than one 
functional category, we compute all LCAs from 
combinations of functional categories in each PPI pair. 
Then, the LCA with the maximum level is selected as 
the similarity value for the functional category between 
the pair. Finally, the similarity weight wF(p1, p2) for the 
functional category of the two proteins p1 and p2 is 
calculated as follows.  
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The similarity weight of the functional categories 
ranges from 1 to 64.  

 
2.2.2. Frequency of co-localization. Interacting 
protein pairs must locate in close proximity, at least 
transiently. Hence the co-localization may be an 
effective means for evaluating hypothetical 
interactions. Huh et al. determined the subcellular 
localizations of each interacting protein pair and the 
fraction of total number of interactions occurring for 
each localization pairs [18]. Interactions are strongly 
enriched between proteins that co-localize, but the 
degree of enrichment varies widely by compartment. 
Hence the greater co-localization weight of two 
putative interacting proteins means the better evidence 
of physical interaction. The co-localization weight 
matrix is generated by the fold enrichment observed 
for each localization pair as compared with the 
randomized data set. (Figure 2(b)) The matrix divides 
subcellular localization into 22 categories, such as bud, 
nucleus, and golgi.  
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                           (a)           (b)     (c) 
Figure 2. Calculating three attribute values for interacting proteins. (a) Tree structure for 
functional categories. (b) Co-localization matrix of interacting protein pairs. (c) Topology of 
interacting protein pair within the interaction networks. 
 
Like the functional category case, most proteins move 
through several subcellular locations. Hence we find all 
combinations of localization weight in PPI pair and 
select the maximum weight as a delegate weight wL(p1, 
p2) for proteins p1 and p2 as follows.  
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The frequency of co-localization is distributed from 

0 to 290. 
 

2.2.3. Topological properties within the interaction 
network. False positive interaction pairs may be 
resulted in sticky proteins which tend to interact with 
unrelated proteins in vitro. The scale-free nature of 
biological networks suggests that highly connected 
proteins are a real feature of protein interaction 
networks [19-20]. Hence the reliable interacting protein 
pair must be tightly connected within interaction 
network, and their many other interacting partners have 
further interactions. Saito et al. proposed interaction 
generality measure (IG2) using five groups of topology 
of the protein interaction network around the target 
interacting pair [21]. For each interacting pair, IG2 
weight is calculated with number of common proteins, 
alternative pathways, and several types of interaction 
that interact with a target interacting pair by applying 
principal component analysis (Figure 2(c)). 

The IG2 value is distributed from -6.35 to 53. 
Lower IG2 value implies more tightly connected pairs 
in the interaction networks.  

 
2.4. Neural Network Algorithm 

 
Neural network learning methods provides a robust 

approach to approximating real-valued, discrete-valued, 
and vector-valued target functions. Neural network 
algorithm is quite robust to noise in the training data. 
Hence it is well-suited to assessment of noisy high-
throughput experimental dataset. Although neural 

network algorithm learning times are relatively long, 
evaluating the learned network is typically very fast.  

Neural network algorithm creates reliability assess-
ment classifier for PPI dataset by constructing a multi-
layer perceptron network of neurons based on the three 
input attributes – similarity of functional categories, 
frequency of co-localization, and topological properties 
within the interaction network. Given each state of the 
target class – true positive or false positive, the algo-
rithm calculates probabilities for each possible state of 
the input attribute. The algorithm iteratively compares 
the predicted class of the PPI pair with known actual 
class of the pair. The errors from initial classification of 
the target class of the first iteration of the whole PPI 
pairs is fed back into the network, and used to modify 
the network’s performance for the next iteration, and so 
on. These probabilities are used to predict an outcome 
of the target class, based on the input attributes. 
 
3. Experimental Result 

 
The system first calculates three input attribute from 

PPI dataset which consists of true positive and false 
positive PPI pairs. The neural network classifier is 
trained based on these attributes and target classes. 
Then, the system performs the assessment of input PPI 
pairs based on the aforementioned three characteristics 
on the neural network.  

The statistical evaluation of the system by 10 fold 
cross-validation shows that it performs well with 
96.18% of accuracy, 94.06% of sensitivity, 97.63% of 
specificity, 96.42% of true positive rate, and 96.03% of 
false positive rate on the average (Table 1). 10 fold 
cross-validation of the training set (using 90% of the 
training set to predict target classes for the remaining 
10%) indicated that the model was not biased. 

We experimented our classifier with pure 5,564 non 
-redundant interaction pairs from Ito and Uetz et al.
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Table 1. 10 fold validation of the neural network classifier 
 0 1 2 3 4 5 6 7 8 9 average 

accuracy 95.78 95.78 95.36 95.99 97.26 97.47 96.62 95.15 95.57 96.84 96.18 
error rate 4.22 4.22 4.64 4.04 2.74 2.53 3.38 4.85 4.43 3.16 3.82 
sensitivity 92.78 93.16 93.65 94.71 95.79 96.81 94.30 92.31 92.78 94.36 94.06 
specificity 97.86 97.54 96.49 96.84 98.24 97.90 98.22 97.13 97.50 98.57 97.63 

TP rate 96.77 96.20 94.65 95.21 97.33 96.81 97.33 95.74 96.26 97.87 96.42 
FP rate 95.14 95.52 95.82 96.50 97.21 97.90 96.17 94.76 95.12 96.15 96.03 

 
The classifier distinguished the whole yeast two-hybrid 
dataset into 2,831 true positive interaction pairs and 
2,733 false positive pairs. 
 
4. Conclusion 
 

In this paper, we presented an assessment scheme 
for the reliability of candidate interacting proteins 
based on the neural network algorithm. We used three 
biological attributes related to PPI, namely, similarity 
of functional category, frequency of co-localization, 
and topological properties within the interaction 
network. The proposed scheme shows good perform-
ance in distinguishing true interacting protein pairs 
from noisy PPI dataset. Our neural network classifier 
can be used to predict candidate interaction protein 
pairs.  

Proteomics studies which are based on interaction 
data should be started with reliable interaction data. 
The proposed reliability verification system for PPI 
pairs may be very useful for this purpose. 
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