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Andreas Krämer, Daniel R. Richards, James O. Bowlby, and Ramon M. Felciano
Ingenuity Systems

1565 Charleston Road
Mountain View, CA 94043
akramer@ingenuity.com

Abstract

The Ingenuity™ Pathways Knowledge Base (IPKB) con-
tains over one million findings manually curated from the
scientific literature. Highly-structured content from the
IPKB forms the basis for a large-scale molecular network of
direct interactions observed between mammalian orthologs,
which is used in Ingenuity’s Pathway Analysis (IPA) sys-
tem. In this study we explore the relationship between this
global network and known functional annotations of genes.
In particular we show that (a) subnetworks formed by genes
annotated with the same functional category have signif-
icantly more edges than equivalent random subnetworks,
and (b) highly-interconnected subnetworks are significantly
enriched in genes with specific functional annotations.

1. Introduction

The idea that biological function correlates with locally
dense interactions in complex molecular networks has been
explored in a number of recent publications. Subnetworks
of highly-interconnected nodes that are less connected with
the rest of the network have been identified as functional
modules in protein-protein interaction [5], metabolic [2],
and transciption regulation networks [1].

Ingenuity’s Pathway Analysis1 (IPA) algorithm, used to
construct biologically relevant subnetworks from a list of
user-provided genes of interest, is also based in part on the
assumption that a high density of network interactions is an
indicator for coherent biological function. In order to show
that biological function is in fact related to dense subnet-
works in IPA’s underlying large-scale mammalian molecu-
lar interaction network we perform a quantitative statisti-
cal analysis using known functional annotations of genes.
This statistical analysis is based on a null model of random

1http://www.ingenuity.com

graphs which explicitly preserves the expectation values of
node degrees. Highly-interconnected subnetworks are iden-
tified by maximizing the network’s modularity in replicated
simulated annealing runs, and subsequently applying a hi-
erarchical clustering method.

2. Method

Let G be an undirected graph representing the global net-
work with V nodes and E edges. The null model is given
by an ensemble of random graphs G′ defined over the same
set of nodes as G where edges are chosen independently at
random such that for each node (with index i) the expecta-
tion value of the node degree in G′ corresponds to the node
degree di in G. Both G and G′ shall contain no self-edges.
It can be shown that the edge probability pij (i 6= j) of G′

is then approximately given by

pij =
V

V − 1
didj

2E
. (1)

Let G[S] and G′[S] be the subgaphs induced by a given
set S of nodes in G and G′. The number of edges X in
G′[S] is a random variable with expectation value E(X) =∑

i>j pij where the sum runs over all possible edges be-
tween nodes in S. Let SA be the set of all nodes that are
annotated with a specific functional category A. Since the
number of possible edges between nodes in SA is large in
most cases (= |SA|(|SA| − 1)/2) and all edges are cho-
sen independently, the probability distribution P (x) of the
number of edges X in G′[SA] is well approximated by a
Poisson distribution

P (x) = e−λ λx

x!
, (2)

where λ = E(X). Let EA be the number of edges in G[SA].
We can then calculate the right-tailed p-value

p =
∑

x≥EA

P (x) (3)



as a measure of significance for the enrichment in edges in
the subnetwork formed by genes with annotation A.

Highly-interconnected subnetworks are identified by the
following method: For any given partitioning of the net-
work G into K subsets of nodes Sk (called “modules” or
“communities”) the modularityM is defined as [3]

M =
1
E

K∑
k=1

[Ek − E(Xk)] , (4)

where Ek is number of edges in G[Sk] and the random vari-
able Xk is the number of edges in G′[Sk]. The goal is to
maximize M in the space of all possible partitionings. An
equivalent formulation of (4) uses the Hamiltonian of a q-
state Potts model

H = −
∑
i>j

(aij − pij) δσiσj , (5)

where σi are Potts spins, and aij denotes the adjacency ma-
trix of G. Here, modules correspond to sets of nodes carry-
ing the same spin, and the partitioning with maximal modu-
larity corresponds to the ground state of (5). The number of
Potts spin states q is irrelevant as long as q is larger than the
number of modules. As pointed out in [4] the Hamiltonian
(5) contains a ferromagnetic and an anti-ferromagnetic con-
tribution and the ground-state will in general exhibit spin
glass-like behavior, i.e. there are many low-lying energy
states. This means that modules are in general “fuzzy” [4],
and boundaries between modules are not well-defined.

In order to circumvent this problem and to remove
ambiguity in the choice of optimal modules we have devel-
oped a method to locate clusters of highly-interconnected
nodes that consistently appear together in the same module
in many partitionings represented by local minima of (5).
We perform a number of independent simulated annealing
runs, each starting from a different initial condition, to
generate a set P of locally optimal partitionings of the
network G. We then calculate the spin-spin correlation
matrix gij =

〈
δσiσj

〉
, where the average is taken over

all samples in P . For pairs of nodes (i, j) that most of
the time appear in the same module, i.e. have the same
Potts spin, we expect that gij will be close to 1 while for
all other pairs gij is expected to be small. In fact, it is
found that gij can be transformed into an approximate
block-diagonal form using a hierarchical clustering method
with an appropriately defined metric in the space of row (or
column) vectors of gij . Clusters of highly-interconnected
nodes determined this way turn out to be insensitive to
details of the hierarchical clustering method. Based on
12 independently replicated simulated annealing runs we
found 16 highly-connected subnetworks of G with sizes
larger than 50 nodes.

p [Eq. (3)] E E(X)

TRPS/TK signaling pathway 3.631·10−69 71 3.1
processing of RNA 5.800·10−100 112 5.8
cytolysis 4.589·10−12 53 17.3
response to biotic stimulus 4.405·10−97 2626 1696.0
adhesion of cells 2.231·10−88 1005 498.5
GPCRP signaling pathway 2.616·10−203 321 30.7
protein kinase cascade 2.007·10−65 229 57.3
secretory pathway 3.278·10−65 92 7.6
metabolism of DNA 1.359·10−86 1256 680.8
cell cycle progression 6.815·10−77 2833 1957.7
synaptic transmission 2.930·10−52 152 32.4
ion transport 9.309·10−38 52 4.3
biosynthesis of protein 9.464·10−28 133 43.4
regulation of apoptosis 3.054·10−31 370 189.5
binding of cells 5.301·10−120 592 189.9
TRPTK signaling pathway 2.780·10−68 130 16.9
metabolism of DNA 1.359·10−86 1256 680.8
transcription 3.488·10−115 3253 2120.3

Table 1. P-values [Eq. (3)], number of edges,
and expected number of edges for various
functional annotations (TRPS/TK = trans-
membrane receptor protein serine/threonine
kinase, GPCRP = G-protein coupled recep-
tor protein, TRPTK = transmembrane recep-
tor protein tyrosine kinase).

3. Results

The results of this analysis are shown in Table 1 and Fig-
ure 1. We calculate network p-values according to Eq. (3)
for 1694 biological process annotations that involve at least
20 genes in the global network. These annotations were
derived from the IPKB findings and annotations from the
Gene Ontology [6]. We find that 39% of these annotations
have a network p-value that is smaller than 10−10. Table
1 lists network p-values for 18 functional categories along
with the actual and randomly expected number of edges
in the corresponding subnetworks. In all cases we find a
significantly increased number of edges in subnetworks de-
fined by genes with the same functional annotation when
compared to a random network.

We determined a second set of p-values (shown in Figure
1) that measure the significance of annotations in the con-
text of each of the 16 highly-interconnected clusters iden-
tified with the method described above. These annotation
p-values were calculated using Fisher’s exact test based on
the size of the network, the size of the clusters, and the num-
ber of annotated genes in the network and in the cluster.
We found that all of the clusters, except for cluster 5 and
7, can be unambiguously assigned to one or two specific,
high-level functional categories with the lowest annotation
p-values. These are the 18 functional categories listed in
Figure 1 and Table 1. The numbers of annotated genes
(between 50 and 887) and cluster sizes (between 50 and



TRPS/TK signaling pathway (50)
processing of RNA (110)
cytolysis (68)
response to biotic stimulus (887)
adhesion of cells (452)
GPCRP signaling pathway (268)
protein kinase cascade (159)
secretory pathway (101)
metabolism of DNA (388)
cell cycle progression (683)
synaptic transmission (175)
ion transport (120)
biosynthesis of protein (145)
regulation of apoptosis (201)
binding of cells (312)
cell movement (750)
TRPTK signaling pathway (86)
transcription (764)
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Figure 1. P-values of functional annotations
in highly-interconnected subnetworks (black:
< 10−30, white: 1, logarithmic grayscale in-
between).

696) are shown in parantheses adjacent to the correspond-
ing functional annotation or cluster index. Three of the clus-
ters (cluster 5, 7, and 12) consist of few interconnected hubs
(E2F1/E2F4, TP53/TP73, and MYC/MYCN/JRK) and their
leafs. As an example, the subnetwork corresponding to
cluster 2 is shown in Figure 2 with genes carrying its domi-
nant functional annotation processing of RNA highlighted.

4. Conclusion

In this analysis we have examined characteristics of
the global mammalian direct molecular interaction network
computed from Ingenuity’s Pathways Knowledge Base
(IPKB). We have shown for a number of functional cate-
gories that subnetworks formed by genes annotated with the
same biological function have significantly more edges than
equivalent random subnetworks based on a node-degree
preserving null model. We have also shown that highly-
interconnected subnetworks (clusters), which were detected
by maximizing modularity, are significantly enriched in
genes with specific functional annotations. In particular we
found 14 clusters that can be unambiguously assigned to
one or two dominant functional categories. These findings
suggest that network clustering algorithms that optimize for
densely-connected subnetworks are likely to identify genes
that participate in coordinated biological function.
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