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Abstract

Symbolic rewriting systems are gaining interest as tools
for simulating biochemical dynamics. Compared to tradi-
tional methods based on differential equations, the symbolic
approach allows a straightforward translation of a signal
transduction network into a system of rewriting rules ca-
pable of describing the network dynamics by means of a
proper application of these rules. Coherently with this de-
sign approach, our algorithm applies rewriting rules pro-
portionally to the values assumed by specific reaction maps.
Such maps are nonlinear functions of the state of the sys-
tem. Preliminary results obtained using this algorithm in
the simulation of a known model of circadian rhythms in
Drosophila envision its potential applicability in reproduc-
ing complex biochemical networks, such as that presented
here.

1. Introduction

We propose a symbolic method for the representation
and the simulation of biochemical models. In an aim to
overcome the limits shown by traditional methods based
on differential equations in representing the complex, het-
erogeneous, and discrete nature of biological systems, our
method translates the evolutionary and transductional as-
pects of a model into a system of rewriting rules [5]. The
application of these rules is governed by specific nonlinear
functions, called reaction maps, that are informed with ki-
netic and quantitative model parameters such as Michaelis
constants and biochemical concentrations. An algorithm
manages step-by-step the dynamic evolution of the result-
ing formal system [1].

Advantages in choosing this method arise due to i)
simple but accurate description of biomolecular reactions:
complex formation (AB → C), dissociation (C → AB),

and enzyme activity (CA → CB); ii) absence of discretiza-
tion stages: the method inherently represents biomolecules
as populations of symbols, conversely it embeds continu-
ous phenomena within the reaction maps; iii) variable res-
olution: as a natural consequence of the way the evolution
algorithm works, individual molecules are treated as more
accurately, as fewer of them populate the system; iv) scala-
bility: new types of molecules and reactions can be straight-
forwardly included in a system.

Successful validations of our method in representing the
Lotka-Volterra population dynamics, the Brusselator model
of the Belousov-Zhabotinskii reaction [1], and the PKC ac-
tivation, foster its application in computational systems bi-
ology. In this poster a synthetic description of the method
is given along with results obtained by the simulation of a
known model of circadian rhythms in Drosophila [3].

2. The algorithm: a quick overview

Let our system be made of a set R = {r, s, . . . , w} of
rewriting rules working over strings on an alphabet A =
{X, Y, . . .} containing k symbols:

r : αr → βr , s : αs → βs , . . . , w : αw → βw

in which αρ and βρ are strings respectively denoting con-
sumed and produced objects for each rule ρ ∈ R.

Let the state of our system be a k-uple 〈q(X), q(Y ), . . .〉
containing the number of objects X, Y, . . . in the system at
every temporal step. To every rule we associate a corre-
sponding reaction map Fr, Fs, . . . , Fw, i.e., a real function
of the state of the system.

By denoting with α(i) the ith symbol in a string α, with
|α| the length of the same string, and with |α|X the number
of occurrences of the symbol X in α, then we define the
reaction weight Wr

(

αr(i)
)

for r : αr → βr with respect



to the symbol αr(i):
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Note that at the denominator we sum only over the rules
containing the symbol αr(i) in their left part.

If we, at this point, consider that every rule r cannot con-
sume more than the amount of the symbol (called also re-
actant) whose availability in the system is lowest, then for
every rule we have to minimize among all reactants—each
one taken with its own multiplicity in αr—participating to
the reaction. In this way we find the (minimum) number of
applications of a rule during a transition of the system:

Λr = min
i=1,...,|αr|
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In the end, during any transition, for every symbol X ∈ A
the change in the number of objects due to r is equal to
|βr|X − |αr|X times Λr:

∆r(X) = Λr (|βr|X − |αr|X)

A detailed explanation of the algorithm structure, in par-
ticular the way it works with populations rather than con-
centrations and its extension to multiple reaction environ-
ments made using membrane systems, is given in [1].

2.1. Application to circadian rhythms

We have applied the algorithm discussed in section 2 to
the simulation of a known model of circadian cycles (or
rhythms) in Drosophila melanogaster, involving the oscil-
lation of the Period (PER) and Timeless (TIM) proteins [3].
Symbolic rewriting allows to describe this model by means
of a set of rules, avoiding the classical approach based on
differential equations.

Figure 1 depicts the salient result we have obtained by
our simulation. The stable oscillatory dynamics generated
by the numerical solution of the differential equations is
achieved also using the symbolic approach, moreover the
relative temporal shifts between concentrations obtained us-
ing the differential equations are respected in our simula-
tion, meaning that comparable dynamic behaviors exist for
the two approaches. In particular, the sequence of concen-
tration peaks exhibited by the phosphorilating PER protein
(P0, P1 and P2) is correctly followed by the peak in the
concentration of the cytosolic PER-TIM complex C and,
finally, by its nuclear counterpart CN .

3 Concluding remarks

The symbolic approach has already obtained promising
results in the simulation of known dynamics as those re-

Figure 1. Plots for nuclear PER-TIM complex
(CN ), phosphorilating PER (P2, P1, P0), and
PER-TIM complex (C). Elements are ordered
starting from the highest to the lowest maxi-
mum peak value, as in the legend at the top-
right corner.

ported in Section 1. These results, along with those com-
ing out in the analysis of the PKC activation process, by
all means suggest to further test the symbolic algorithm in
models of biochemical dynamics.

Even more interesting will be comparing our symbolic
algorithm to some well-known stochastic simulation meth-
ods, that are used when the molecules involved in a bio-
chemical process are few in a way that the deterministic ap-
proach turns out to be no longer suitable. Surprising analo-
gies exist in fact between the symbolic and the stochas-
tic approach to the simulation of circadian rhythms when
our algorithm is set to work over population (i.e., discrete)
rather than concentration (i.e., continuous) domains [4, 2].
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