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Abstract

We propose a reverse engineering scheme to discover
genetic regulation from genome-wide transcription data
that monitors the dynamic transcriptional response after a
change in cellular environment. The interaction network
is estimated by solving a linear model using simultaneous
shrinking of the least absolute weights and the prediction
error.

The proposed scheme has been applied to the murine
C2C12 cell-line stimulated to undergo osteoblast differenti-
ation. Results show that our method discovers genetic inter-
actions that display significant enrichment of co-citation in
literature. More detailed study showed that the inferred net-
work exhibits properties and hypotheses that are consistent
with current biological knowledge.

1. Introduction

In order to understand any developmental process, it is
imperative to unravel the underlying genetic interaction net-
work. We devised a method for Least Absolute Regression
Network Analysis (LARNA) that can unravel genetic net-
work structure from microarray data sampled in time. The
interaction network is estimated by solving a linear model
using simultaneous shrinking of the least absolute weights
and the prediction error. This approach effectively solves
the problem of having a limited amount of arrays by fo-
cussing on finding the structure of the network.

Current successful methodologies to infer genetic inter-
actions from microarray data, however, have primarily been

restricted to the use of perturbation (e.g. knockout) microar-
ray data [2, 4].

2. Network Inference

LARNA is based on a linear model [2] that assumes that
the gene expression level of each gene is the result of a
weighted sum of all other gene expression levels at the pre-
vious time-point ŷt = W ·xt + ε1. The interaction parame-
ter, wij ∈ W, represents the existence (wij �= 0) or absence
(wij = 0) of a controlling action of regulating gene j on tar-
get gene i, whether it is activating (wij > 0) or inhibiting
(wij < 0), as well as the strength (|wij |) of the relation.

LARNA distinguishes itself from other regression net-
work models as it provides a unique trade-off between data-
fit versus robustness and limited connectivity. This was
obtained by augmenting the standard total squared error
with a penalty term that sums the absolute values of the
weights [5]:

Ŵ = arg min
W

T∑

t=1

||ŷt − yt||2 + λ

N∑

i=1

N∑

j=1

|wij | (1)

3. Results

The proposed scheme has been applied to the murine
C2C12 cell-line stimulated to undergo osteoblast differenti-
ation (8 arrays). To test how well our method compares to
other approaches, we have also applied three linear models

1t ∈ 1, 2, . . . , T , T is no. array pairs and if xt represents a measure-
ment at time s, e.g. xt = x(s), than yt = x(s + ∆s)
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Figure 1. The performance of the network
methods in terms of co-citation enrichment.

(i.e. sparse QR (SQR), backward search (B) and forward
beamsearch (F)), two non-linear approaches (i.e. Discrete
Dynamic Bayesian Network (DDBN) and Sigmoidal Gradi-
ent Ascent (SGA)) to the same data. Furthermore we com-
pare these networks with randomly connected networks and
to a co-expression network obtained from hierarchical clus-
tering.

Jenssen [3] has shown that a co-citation network reflects
biologically meaningful relationships. One way to validate
the network results is to compare them against a co-citation
network. For each predicted network, its performance is
reflected by its specificity (how often a proposed interac-
tion concerns genes that are related SP = TP

TP+FP ) and its
sensitivity (how much of the ‘ground truth’ is discovered
SE = TP

TP+FN ).
Figure 1 shows the performance of all methods The

results show that standard linear approaches (B, F and
SQR) only perform slightly better than. The non-linear
DDBNA does not outperform random network structures at
all, whereas the non-linear SIG only achieves strong enrich-
ment at low sensitivity, but does not outperform the best
clustering result. The best overall performance of all net-
work inference methods was obtained by LARNA.

A single network from LARNA was selected to be ana-
lyzed for biological consistency (See Figure 2). The global
inter-relationships between genes and modules revealed by
the network fit extremely well with current knowledge of
differentiation of mesenchymal cells. For example, the dif-
ferentiation of mesenchymal cells occurs with a concur-
rent decline in proliferative capacity [1]. Accordingly, the
network shows negative feedback from the muscle and os-
teoblast differentiation modules to the proliferation module.

Figure 2. Diagram of the network inferred by
LARNA

4 Discussion

In conclusion, we presented LARNA, a regression al-
gorithm to infer sparse genetic networks from microarray
data sampled over time. LARNA was shown to outperform
other network inference methods and clustering algorithms.
Importantly, two global hypothesis raised by LARNA con-
form to current biological knowledge, i.e. osteoblast mat-
uration is induced by extra-cellular matrix formation and
proliferation and differentiation are two mutually exclusive
modes of operation. Although the interactions revealed by
LARNA on the current limited set of microarrays are of a
global character we are confident that future studies with
more arrays sampled at smaller intervals are likely to pro-
vide a network map with higher resolution.
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