
A Parallel Algorithm for Clustering
Protein-Protein Interaction Networks

Qiaofeng Yang
Department of Computer Science

University of California
Riverside, CA 92521, USA

qyang@cs.ucr.edu

Stefano Lonardi
Department of Computer Science

University of California
Riverside, CA 92521, USA

stelo@cs.ucr.edu

Abstract

The increasing availability of interaction graphs re-
quires new resource-efficient tools capable of extracting
valuable biological knowledge from these networks. In
this paper we report on a novel parallel implementation
of Girvan and Newman’s clustering algorithm that is ca-
pable of running on clusters of computers. Our parallel
implementation achieves almost linear speed-up up to
32 processors and allows us to run this computationally
intensive algorithm on large protein-protein interaction
networks. Preliminary experiments show that the algo-
rithm has very high accuracy in identifying functional
related protein modules.

Software will be made available in the public domain
at http://www.cs.ucr.edu/˜qyang/

1 Introduction

Recent advances in proteomics such as yeast two-
hybrid, phage display and mass spectrometry have re-
sulted in several genome-scale protein-protein interac-
tion (PPI) map projects. The identification of functional
related proteins is among the most urgent computational
challenges facing the scientific community. In the litera-
ture, the problem has been approached by analyzing the
topological properties of interaction networks (see, e.g.,
[2, 11]) or by comparing networks from several model
organisms (see, for example, [8, 9, 12]).

In [2], Bader and Hogue described a graph theoretic
clustering algorithm for finding potential protein com-
plexes in large PPI networks. The method is based on
vertex weighting by local neighborhood density and out-
ward traversal from a locally dense seed protein to iso-
late the dense regions according to given parameters.
Rives and Galitski [11] studied modular organization

of cellular networks by developing a network cluster-
ing method. An all-pairs shortest path distance matrix
is constructed and transformed into an association ma-
trix with each entry defined as ����, where � is the
shortest path distance between two vertices in the net-
work. Hierarchical agglomerative average-linkage clus-
tering with the uncentered correlation coefficient as the
distance metric is then applied to the association matrix.

With the availability of PPI networks from sev-
eral model organisms, recent research on identifying
functional related proteins has focused comparative ap-
proaches. Kelley et. al. [8] have employed ideas from
sequence alignment and applied them on PPI networks
of budding yeast S.cerevisiae and bacterial pathogen H.
pylori. Conserved pathways are identified by global
aligning two PPI networks. To perform the alignment,
the two networks are combined into a global alignment
graph in which each vertex represents a pair of proteins
from each network which are similar at sequence level
and each edge represents a conserved interaction, gap,
or mismatch. A log probability score is formulated over
vertices and edges of a path in the global alignment
graph. The highest-scoring path is found by dynamic
programming after decomposing the global alignment
graph to acyclic graphs. A similar approach was adopted
by Sharan et. al. [12] to identify protein complexes
by comparing two PPI networks. An orthology graph,
similar to global alignment graph, is constructed where
edges are assigned weights so that high weighted sub-
graphs correspond to conserved protein complexes. A
heuristic algorithm is proposed based on forming high
weighted seeds, refining them by exhaustive enumera-
tion, and then expanding them using local search. Koyu-
turk et. al. [9] introduced the idea of pairwise local
alignment of PPI networks based on a evolution model
of PPI network. The proteins in two networks are classi-
fied as orthologs and paralogs based on sequence simi-
larity. An alignment graph is constructed on orthologous



and paralogous proteins with edges classified as match,
mismatch, and duplication. Each type of edge is asso-
ciated with a reward or penalty so that the maximum
weight-induced subgraph corresponds the best align-
ment between two networks. The maximum weight-
induced subgraph is found by seeding a subgraph with
a protein that has a large number of conserved interac-
tions and small number of mismatched interactions and
growing it by adding proteins that share conserved inter-
actions with this subgraph one by one.

Here we are interested in discovering functional re-
lated proteins by clustering interaction graphs based on
their topological properties. Proteins that are involved
in the same cellular process or reside in the same pro-
tein complex are expected to have strong interactions
with their partners. At the same time, interactions be-
tween distinct functional modules are expected to be
suppressed in order to increase the overall robustness
of the network by localizing effects of deleterious per-
turbations [10]. Therefore, the identification of densely
connected subgraphs in PPI networks may reveal func-
tional related protein modules.

Among the wide spectrum of graph clustering al-
gorithms available in literature, we selected the clus-
tering algorithm by Girvan and Newman [5], which
showed impressive performances in discovering com-
munity structures in several networks, such as social net-
works, scientific collaborations, food web, etc. Qual-
itatively, a community is defined as a subset of ver-
tices within the graph such that connections between
the vertices are denser than connections with the rest of
the network. To the best of our knowledge Girvan and
Newman’s algorithm has never been used on interaction
networks. One of the reasons may be due to its high
computational cost. In order to run it on large interac-
tion graphs we devised a parallel implementation which
achieves almost linear speed-up up to 32 processors.
Preliminary experiments on several protein-protein in-
teraction networks show that it is very effective in iden-
tifying functional related protein modules.

2 Edge Betweenness Clustering

Girvan and Newman’s [5] algorithm is a novel di-
visive clustering algorithm for graphs. In divisive al-
gorithms, one starts with the whole graph and itera-
tively removes the edges, thus dividing the network pro-
gressively into smaller and smaller disconnected subnet-
works. In Girvan and Newman’s algorithm the edges are
removed based on the value of their edge betweenness,
which is a generalization of the centrality betweenness
first introduced by Anthonisse [1] and Freeman [4].

Consider the shortest paths between all pairs of ver-

tices in a graph. The betweenness of an edge is defined
as the number of these paths running through it. When
a graph is made of tightly intra-connected and loosely
inter-connected clusters, all shortest paths between ver-
tices in distinct clusters have to traverse the few inter-
cluster connections, which therefore have a high be-
tweenness value. By removing those edges first, the
clusters are separated from one another, thus revealing
the underlying community structure of the graph. Gir-
van and Newman’s clustering algorithm works as fol-
lows: (1) Calculate the betweenness for all edges in the
network; (2) Remove the edge with the highest between-
ness; (3) Recalculate the betweenness for all edges af-
fected by the removal; (4) Repeat from step 2 until no
edge remains.

A single step of the edge betweenness algorithm con-
sists of the computation of the edge betweenness values
for all the edges in the graph and the removal of the edge
with the highest value. The iterative removal of edges
leads to the decomposition of the network into discon-
nected subgraphs which in their turn undergo the same
procedure, until the whole graph is divided into a set of
isolated vertices. The relationship of the disconnected
subgraphs in the decomposition process can be repre-
sented by a hierarchical tree which is built based on the
reverse order of the removal of the edges.

Girvan and Newman’s clustering algorithm is compu-
tationally expensive. Evaluating the betweenness value
for all edges requires ����� time, where � is the num-
ber of vertices and � the number of edges in the graph.
The iterative removal of all � edges leads a worst-case
time complexity of������, which makes the algorithm
practically unfeasible for large networks.

3 Modularity

The output of the edge betweenness clustering algo-
rithm described above is a hierarchical tree representing
the clusters. Clearly the algorithm will produce such a
tree even if the input graph is random, although in this
case the clusters will not be very meaningful. We need,
therefore, an objective measure of the quality of the clus-
ters. Newman and Girvan measure the quality of the
clusters found by the algorithm by introducing the con-
cept of modularity [6]. In the following, we use the same
notation as in [6]. Decompose the network into � com-
munities. Construct a symmetric matrix e of size � � �.
An element ��� in e represents the fraction of all edges in
the network that link vertices in community � to vertices
in community �. The trace of this matrix 	
e �

�
� ���

represents the fraction of edges in the network that con-
nect vertices in the same community. Summation of row
(or column) elements �� �

�
� ��� represents the frac-



tion of edges that connect to vertices in community �.
The modularity is defined as

� �
�

�

���� � ��
�� � 	
e� ��e���

As pointed out in [6], this quantity measures the frac-
tion of the edges in the network that connect vertices of
the same type (i.e., intra-community edges) minus the
expected value of the same quantity in a network with
the same community divisions but random connections
between the vertices. According to [6], for a random
network, � approaches 0. Values approaching � � �,
which is the maximun, indicate strong community struc-
ture. The higher the value is, the stronger the commu-
nity structure is. In section of experimental results, we
will show the clustering results using modularity mea-
sure defined above on five PPI networks.

4 Parallel Edge Betweenness Clustering

In our parallel algorithm we exploited the ideas in
[3], where the authors propose a new accumulation
technique that integrates well with traversal algorithms,
particularly breadth-first search, for solving the single-
source shortest path problem from the source to all
other vertices. By finding all-pairs shortest paths us-
ing breadth-first search starting from each vertex in the
graph, the edge betweenness value can be obtained by
summing pair-dependencies over all the traversals for
each edge. The pair-dependency is defined as Æ���� �
���������, where ��� denotes the number of shortest
paths from � � � to � � � and ����� is the number
of shortest paths from � to � which go through . Pair-
dependencies calculated from each BFS for every vertex
in the graph are additive, from which edge betweenness
value can be obtained. Since BFS can be performed in-
dependently and simultaneously from each vertex in the
graph, the calculation required at each iteration of find-
ing the edge with the highest betweenness value can be
done by parallelizing all-pairs shortest paths. The par-
allel algorithm is sketched in Figure 1. Vertices in the
graph are evenly assigned to all the processors. Each
processor has its own copy of the graph. The procedure
is initiated by a host processor. Each processor performs
BFS from all the vertices assigned to it and sums up lo-
cal pair-dependencies obtained from each BFS. The lo-
cal pair-dependencies are then sent to the host processor.
The host processor is responsible for summing up all the
local pair-dependencies from each processor, obtaining
the global pair-dependencies, and finding the edge with
the highest betweenness value. The edge with the high-
est betweenness value is then broadcast by the host pro-
cessor to all the processors in the communication world.

Input: Graph �

Output: A list of edges in the reverse removal order
1. Evenly assign the vertices in � to all processors
2. while the number of edges in � � � on all processors do
3. for all the vertices � � � do in parallel
4. Breadth-First-Search(�� �)
5. Send all pair-dependencies Æ�����, � � � to host
6. end for all
7. Receive Æ�����
8. Calculate betweenness values for all edges in �
9. Broadcast the edge � with the highest betweenness
10. Remove edge � from � on all processors
11. SYNCHRONIZE()
12. end while

Figure 1. Sketch of the parallel edge be-
tweenness clustering algorithm

All the processors delete the edge received in their own
graph copy and start the next iteration until no edges left
in the graph.

5 Implementation and Experimental Re-
sults

We implemented the parallel algorithm using C in
conjunction with the LAM 7.1.1 implementation of
Message Passing Interface (MPI). The algorithm was
tested on the Linux cluster at the Bioinformatics Core
Facility at UC, Riverside. The cluster consists of thirty
two dual processor Athlon MP 2800 nodes with 1GB of
RAM each. Host bus clock speed is 266MHz.

Five different PPI networks downloaded from DIP
database [13] were used. We ran the algorithm on the
largest component in the network. The size of the largest
component in each of the datasets is summarized in Ta-
ble 1. The parallel edge betweenness clustering algo-
rithm was run on each of the five datasets using the
modularity value [6] as an indicator for the quality of
the clusters. Table 1 summarizes the number of clus-
ters in each network when the modularity value reaches
its maximum. We used the web-based tool PANDORA

[7] to annotate the clusters obtained from the algorithm.
The annotation for the clusters with the highest modu-
larity value in yeast PPI network is shown in Table 2.
The results show strong functional correlations among
the proteins in the same cluster using SwissProt annota-
tion database. For example, the first cluster has 290 pro-
teins of which 269 are annotated in SwissProt database.
Most of the proteins in the first cluster are involved in
ribosome and protein biosynthesis.

Figure 2 shows the speed-up of the parallel algorithm



Organism n m C Q
D. melanogaster 6926 20745 962 0.31
S. cerevisiae 4687 15138 371 0.44
C. elegans 2386 3825 94 0.60
H. pylori 686 1351 56 0.45
H. sapiens 563 870 17 0.80

Table 1. Dataset summary. n and m are the
number of vertices and edges. C is the
number of clusters. Q is the modularity.

C Size Function assignment
1 290 Ribosome and protein biosynthesis
2 258 Protein catalytic activity related metabolism
3 130 mRNA processing
4 116 Transcription regulation
5 90 Proteasome complex and protein metabolism
6 86 Nuclear transport
7 62 Small GTPase mediated signal transduction
8 50 RNA polymerase and transcription regulation
9 43 Golgi stack and protein transport
10 36 Ribosomal proteins

Table 2. Annotations of the clusters with
the highest modularity values in S. cere-
visiae PPI network

over the sequential algorithm on 1, 2, 4, 8, 16, 32 pro-
cessors. The speed-up is close to linear for up to 32
processors. The parallel implementation makes it possi-
ble to run the clustering algorithm on a graph of 7,000
vertices and 20,000 edges in less than 7 hours if run on
16 processors, in less than 5 hours if run on 32 proces-
sors, which would take almost 3 days if run on a single
processor.

References

[1] J. M. Anthonisse. The rush in a directed graph. Tech-
nical report, Stichting Mathematisch Centrum, Amster-
dam, 1971.

[2] G. D. Bader and C. W. V. Hogue. An automated method
for finding molecular complexes in large protein interac-
tion networks. BMC Bioinformatics, 4, 2003.

[3] U. Brandes. A faster algorithm for betweenness cen-
trality. Journal of Mathematical Sociology, 25:163–177,
2001.

[4] L. C. Freeman. A set of measures of centrality based on
betweenness. Sociometry, 40:35–41, 1977.

[5] M. Girvan and M. E. J. Newman. Community structure
in social and biological networks. PNAS, 99(12):7821–
7826, 2002.

Figure 2. Speed-up on D. melanogaster(top)
and S. cerevisiae(bottom) PPI networks. The
�-axis is the number of processors and the
�-axis is the speed-up.

[6] M. E. J.Newman and M. Girvan. Finding and eval-
uating community structure in newtorks. arXiv:cond-
mat/0308217, 1, 2003.

[7] N. Kaplan, A. Vaaknin, and M. Linial. Pandora:
Keyword-based analysis of protein sets by integration of
annotation sources. Nucleic Acids Research, 31:5617–
5626, 2003.

[8] B. P. Kelley, R. Sharan, R. M. Karp, T. Sittler, D. E. Root,
and B. R. Stockwell. Conserved pathways within bacte-
ria and yeast as revealed by global protein network align-
ment. PNAS, 100(20):11394–11399, 2003.

[9] M. Koyuturk, A. Grama, and W. Szpankowski. Pairwise
local alignment of protein interaction networks guided by
models of evolution. RECOMB, 2005.

[10] S. Maslov and K. Sneppen. Specificity and stability in
topology of protein networks. Science, 296:910–913,
2002.

[11] A. W. Rives and T. Galitski. Modular organization of
cellular networks. PNAS, 100(3):1128–1133, 2003.

[12] R. Sharan, T. Ideker, B. P.Kelley, R. Shamir, and
R. M.Karp. Identification of protein complexes by com-
parative analysis of yeast and bacterial protein interaction
data. RECOMB, pages 282–289, 2004.

[13] L. Xenarios, L. Salwinski, X. J. Duan, P. Higney, S.-M.
Kim, and D. Eisenberg. Dip, the database of interacting
proteins: a research tool for studying cellular networks
of protein interactions. Nucleic Acids Research, 30:303–
305, 2002.


