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Abstract 

 
The availability of entire genome sequences, 

coupled with genome-wide studies of gene expression, 
offers promise for discovering new pathways along 
with their regulatory programs.  Clusters identified 
from gene co-expression networks (GCNs) reveal 
correlations between genes but say little about the 
mechanism behind their coregulation. We have 
constructed a co-binding network (CBN) to identify the 
potential combinations of transcription factors (TFs) 
that may regulate a set of genes.  The CBN was built 
by connecting all pairs of genes bound by the same 
transcription factor observed in ChIP-Chip microarray 
experiments.  We superimposed the CBN onto the GCN 
to identify clusters of genes in overlapping sub-
networks.  Applying our method to a GCN derived 
from four distantly related species, we identified 
transcription factor combinations for several 
conserved sub-networks in yeast. 
 
 
1. Introduction 
 

With the recent availability of datasets from large-
scale studies on gene expression, we may finally begin 
to decipher the complex regulatory structure of the cell.  
One major challenge lies in deciphering the 
combinatorial and context-specific logic of gene 
regulation from these data.  For example, we seek rules 
such as “transcription factors A and B up-regulate 
genes X, Y, and Z under condition C.”  As a first step 
in this direction, many current methods search for 
clusters of coregulated genes. While clustering gene 
expression profiles may help reveal co-regulation   
groups, the clusters themselves say little about the 
mechanism underlying their coregulation.  

Recently, genomewide ChIP-Chip assays have 
started to provide us with more concrete examples of 
TF binding.  These experiments provide evidence of 
where TFs bind in the genome, but do not offer any 

information on whether this binding is functional.  
Several methods have been proposed to combine 
coexpression data with transcription factor binding 
data in an attempt to address these issues.  Our work 
extends these methods by using expression data from 
multiple species and locating coregulated groups of 
genes along with the TFs that regulate them. 
 

 
Figure 1: Method overview 

 
2. Methods 
 

Our method takes as input multiple DNA and ChIP-
Chip microarray data and finds subsets of coregulated 
genes and the TFs that potentially regulate them 
(Fig. 1).  First, we build a co-binding network (CBN) 
that describes which genes are bound by the same set 
of TFs.  In the CBN, genes are represented as nodes 
and each TF is represented as a labeled edge.   We 
compiled the TF binding data from several yeast ChIP-
Chip microarray experiments [1-4].  Next, we create a 
gene coexpression network (GCN) by mapping the 
multispecies (human, fly, worm, yeast) network, as 
described in [5] to yeast.  This network connects two 
genes if they are significantly coexpressed across 
several microarray experiments in multiple eukaryotic 
organisms.  We then create a superimposed network 
(SN) by intersecting the CBN with the GCN.  This 
network therefore connects all genes that are both 
coexpressed and share at least one common TF.    
Finally, we identify kernels as strongly connected 



subgraphs in the SN.  To identify these kernels, we use 
the MCODE algorithm [6], which is available as a 
plug-in for the Cytoscape software package [7].   
 

 
Figure 2: HSF1 kernel 

 
3. Results and Discussion 

 
We applied our method to the gene coexpression 

network determined in [5] and to the co-binding 
network created from [1-4].  We found 16 kernels 
having five or more genes and one or more significant 
TFs.  Several of these kernels contain subkernels of 
genes regulated by different combinations of TFs.  
Future work will shed light on the complex interactions 
between the TFs in each kernel. 

To assess our method’s ability to find relevant TF-
kernel pairings, we analyzed known targets of the yeast 
heat shock factor (HSF1).  HSF1 is a member of heat 
shock proteins that is well conserved across 
eukaryotes.  Hahn et al [8] created a ‘gold standard’ 
dataset by combining expression results of an HSF1 
mutant with an HSF1 specific ChIP-Chip experiment.  
To create a gold standard to compare our method 
against, we intersected the gene list of Hahn et al with 
those contained in the CBN, yielding a total of 26 
genes.  84 genes (out of 108) from the CBN alone were 
not contained in this gold standard set.  Thus, many 
putative targets of HSF1 determined by ChIP-Chip 
data alone cannot be confirmed by specific knock-
down of HSF1, supporting the idea that many of its 
binding sites may be non-functional. 

Among the kernels identified by MCODE is a 
kernel of eight genes connected solely by HSF1 factors 
(Fig. 2).  It is worth noting that the set of genes 
contained in the kernel are all connected strictly by 
HSF1, and do not share any other TFs.  As is 
evidenced by the high connectivity of this kernel, the 
majority of these genes are coexpressed together in the 
GCN.  Of the eight genes in this kernel, six of them are 
contained in the gold standard (0.75 specificity as 
opposed to the 0.24 specificity obtained from using 
ChIP-Chip data alone.)  Of the remaining two, one is a 

known heat shock protein chaperonin.  The final gene 
is not known to be involved in the heat shock response.   

   
4. Future Directions 
 

Eukaryotic genes are often regulated by more than 
one TF.  In the future, we will extend our method to 
the automated discovery of TF combinations that 
regulate a set of genes.  Using our superimposed 
network, we can test every combination of TFs within 
a kernel for its ability to distinguish kernel genes from 
non-kernel genes.   

Finally, as more binding data is becoming available 
for multiple organisms, we will be able to construct a 
CBN representing conserved TF binding relationships.  
We expect that using an evolutionarily conserved CBN 
should increase our ability to identify functional 
combinations of TF binding.  In this way, we hope to 
decipher a clearer picture of the evolution of gene 
regulation in eukaryotes. 
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