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Abstract 
 

This study is aimed at elucidating putative 

transcription regulators (TRs) responsible for the 

observed differential expression pattern. Combined 

direct promoter binding and indirect transcriptional 

regulation networks were used, and the expression 

levels of each TR’s downstream targets were 

collectively analyzed, as a sample, for significance. 

Statistical procedure was also developed that takes 

into account the sign of the expression change, thus 

requiring the downstream targets to exhibit expression 

pattern consistent with the regulatory relationship 

effect signs. 

 

 

1. Introduction 
 

Analysis of large scale expression datasets poses a 

significant challenge because of natural variability of 

gene expression, high levels of noise, and multiple 

testings performed in one run. Conventional methods 

for microarray analysis (e.g. [1]) are aimed at finding 

significant features in the data and, for instance, 

selecting differentially expressed genes based on the 

data statistics alone. However, using the expression 

data in combination with additional information, such 

as relationships among genes, improves the power of 

statistical tests and leads to better and more extended 

predictions. Examples of promising existing integrative 

approaches include, e.g. co-clustering of gene 

expression and interaction data [2], and discovering 

putative regulatory pathways [3].  

 

2. Statistical model 
 

Our goal is to find a putative set of TRs driving the 

differential expression of other genes and thus 

suggesting an explanation for the observed data.  

We refer to a TR as “significant” if its downstream 

targets in the regulatory network exhibit, as a set, a 

pattern of differential expression significantly deviating 

from the distribution expected by random chance. The 

definition of such “significance” is, however, model-

specific. The simplest model would deal with pre-

selected set of differentially expressed (DE) genes 

determined from the microarray data and evaluate the 

overrepresentation of DE genes among the targets of 

each TR. We found, however, that this model lacks 

sensitivity and that the results strongly depend on the 

(arbitrary) p-value cutoff used to pre-select DE genes. 

Hence, we suggest a more robust test, in which the 

expression values (log-ratios) measured for each target 

of particular TR are considered as a sample to be tested 

against the sampling distribution. 

The simplest choice for the sampling distribution is 

the collection of all log-ratio absolute values measured 

on the array. We argue however that “network 

rewiring” randomization procedure [4] should be 

generally preferred. In resampling terms, this procedure 

requires breaking all the network edges and then 

randomly reconnecting the dangling edge halves. This 

model has certain biologically sound benefits. In 

particular, consider a gene that can be regulated by a 

large number of different TRs in the network. Even if 

such a gene exhibits very high or very low log-ratio, it 

still makes little contribution to, or is not too 

prohibitive for the significance of each particular 

sample (and upstream TR) it belongs to. While such 

behavior is achieved automatically through network 

resampling, the brute force approach is too expensive 

computationally and we suggest here a simple and 

efficient alternative. To approximate the resampling it 

is sufficient to replicate each measured log-ratio 

absolute value on the array by the number of TRs 

regulating this gene (i.e. by the in-degree of the gene in 

regulatory network). Each replicated log-ratio is now 

effectively associated one-to-one with the in-going 

edge adjacent to the gene, thus we refer to this 

distribution as “edge distribution”.  

Importantly, the edge distribution also provides us 

with the means to take into account not only the fold 

change absolute value, but also its direction. Indeed, if 



we take the sign of gene’s log-ratio (up-regulated, +1, 

and down-regulated, -1) and define edge (regulatory 

relationship) effect signs (positive, +1, or negative, -1, 

regulation), then for any given TR truly exerting its 

regulatory function, the product of effect sign by the 

target expression change sign is expected to be the 

same for all targets (e.g., if a TR is activated, then the 

targets it positively and negatively regulates are 

expected to be activated and suppressed, respectively, 

1)1()1(11 =−⋅−=⋅ ). We can thus build a “signed 

edge distribution”, in which each measured log-ratio is 

replicated by the gene’s in-degree and each replica is 

multiplied by the corresponding edge’s effect sign. 

Drawing from such a distribution still approximates 

network resampling, when a TR is allowed to randomly 

pick dangling edges bearing effect signs. The sample 

for such test should be also modified: all the log-ratios 

of the downstream targets must be taken with signs and 

multiplied by the corresponding edge signs. If some 

edge signs are unknown, we run the test on the subsets 

of targets (edges) for which effect signs are available. 

 

4. Data 
 

The whole-genome expression dataset (Affymetrix 

U133 array) comparing primary tumor and isogenic 

metastatic colon cancer cell lines [5] was used; the 

transcripts were mapped to 12,902 loci. 

 The regulatory network was extracted from the 

ResNet database [6], which contains a collection of 

~500,000 relationships automatically mined from the 

biomedical literature with the natural language 

processing full-sentence parsing algorithm [7]. For this 

work we used a set of ~12,000 direct and indirect 

transcription regulation relationships among 3,845 

genes and gene products. 

 

5. Results 
 

First, we pre-selected DE genes with p-value cutoff 

0.001 (291 genes). Testing for overrepresentation of 

DE genes among downstream targets we found the 

following significant TRs: E2F1, LEF1, FLI1, RB1, 

TP53 (p-values 0.008, 0.022, 0.026, 0.026, 0.050, 

respectively). At the cutoff p<0.005 (860 DE genes), 

we still observed LEF1, TP53, and FLI1 (p=0.017, 

0.018, 0.021) as significant, however other TRs lost 

significance, while a few new TRs (MAP2K3, E2F4, 

TCF4) became significant. Some of the observed TRs 

are indeed major elements of colon cancer pathway 

(LEF1, TCF4) and others might be implicated, but it is 

seen that the procedure has low sensitivity and 

demonstrates strong dependence on the DE cutoff. 

Next, we built the “edge distribution” and compared 

to it samples of absolute log-ratio values downstream 

of each TR. Mann-Whitney ranked test was used to 

calculate the p-value. All significant TRs found with 

the discrete test were recovered, except for LEF1 

(p=0.18). However, many other potentially interesting 

regulators were found (discussed below). We suggest 

using unsigned test when most of the effect signs are 

unknown or when higher sensitivity is desired. 

Finally, when we apply the signed test, a number of 

TRs from the unsigned test results lose their 

significance, indicating that their downstream targets 

exhibit somewhat elevated log-ratios, but the change 

directions do not correlate well with effect signs. 

Checking for consistent expression change pattern, the 

signed test is expected to perform the most stringent 

selection. In the absence of the golden standard, we 

refer to the list of 10 most significant TRs obtained 

with the signed test (p-values 0.004–0.017): JUND, 

PPARA, PPARG, AKT1, CTCF, NOG, LEF1, TP73, 

ETV4, PKCZ, and CITED2. Indeed, all these genes 

except for CITED2 are either known to play a role or 

implicated in colon cancer, or are oncoproteins 

implicated in many cancer types. This suggests the 

meaningfulness and relevance of the model used.  

In conclusion, we have demonstrated simple yet 

effective procedures that allow pinpointing putative 

TRs governing the observed differential expression 

pattern. When applied to the whole-genome dataset, 

our tests successfully retrieved highly relevant TRs. 
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