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Abstract

Predicting and proper ranking of splice sites (SS) is a
challenging problem in bioinformatics and machine learn-
ing communities. Proposed method of donor and accep-
tor SSs prediction is based on counting oligonucleotide
frequencies for splice and splice-like signals. Based on
bayesian principle SS sensors were built. We demon-
strate advantage of our proposed sensor design compared
with existing sensors and tools. In particular, our donor
sensor outperforms Maximum Entropy Sensor for several
representative test sets of genes when compared on Re-
ceiver Operating Characteristic (ROC) curve. We repre-
sent combinatorial interaction of SSs and related factors
with Logarithm Of oDds (LOD) weight matrices. Based on
factor interactions we were able to substantially improve
splice signals prediction quality and rank SSs better than
SpliceView, GeneSplicer, NNSplice and Genio
tools. Proposed method is used in our new splicing simula-
tor SpliceScan.

1 Introduction

The precise removal of introns from pre-messenger
RNAs (pre-mRNAs) by splicing is a critical step in expres-
sion of most metazoan genes. The process requires accurate
recognition and pairing of 5 ′ and 3 ′ SSs by the splicing ma-
chinery. Inappropriate splicing of a gene may result into the
translation of a non-functional protein.

Weakly conserved SSs are necessary, but not sufficient,
for the exact recognition of the exons. Frequently degen-
erate donor, acceptor, polypyrimidine and the branch point
motifs provide insufficient information for the exact SSs de-
tection.

Correct prediction of SSs appear to be the key ingredient
to successful ab initio gene annotation, since dynamic pro-
gramming procedures have to see all the exon/intron bound-
aries in order to find the optimal solution [1]. The most
sensitive sensor design predicting the least amount of false

positives is preferable. Another good feature of a SS sen-
sor is ability to rank predicted SSs, i.e. assign certain score
characterizing importance or strength of a putative site of
splicing.

2 Proposed design

There were numerous SS sensor designs proposed,
among the best is Maximum Entropy Sensor [3]. Our
sensor design is based on 7-mer oligonucleotide count-
ing in splice and splice-like signals, with placement of 7-
mers within consensus similar to Maximum Entropy Sensor
http://genes.mit.edu/burgelab/maxent/.
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(a) Donor-Donor LOD
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(b) Acceptor-Acc. LOD
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(c) Acceptor-Donor LOD
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(d) Donor-Acceptor LOD

Figure 1. LOD diagrams for splice sites inter-
actions

We used our GIGOgene [2] tool to collect extensive
learning set of predicted human and mouse gene structures.

Based on collected oligonucleotide frequencies, we can
evaluate probability of a SS given an oligonucleotide.

P (ss|oligo) =
P (ss) × P (oligo|ss)

P (ss) × P (oligo|ss) + P (¬ss) × P (oligo|¬ss)
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(a) Sensor ROC diagram for 5 ′ splice site
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(b) Sensor ROC diagram for 3 ′ splice site
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(c) Applications ROC diagram for 5 ′ splice site
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(d) Applications ROC diagram for 3 ′ splice site

Figure 2. ROC diagrams for Donor and Acceptor signals

Using the learning set, we evaluated SS interac-
tions for signals of different strengths (on scale 1-10)
and interpolated normalized signal concentration ratios

log2

(
splice

splice-like

)
to get LOD diagrams, as shown in

Figure 1. We incorporated biases found into our new
SpliceScan tool.

3. Results

We tested performance of our Bayesian sensor and
SpliceScan on 250 multi-exon annotated human genes
that were specifically excluded from the learning set. We
use Receiver Operating Characteristic (ROC) to compare
performance of different sensors and tools, as shown in Fig-
ure 2. Program, learning set and test results are available

at http://bioinformatics.ist.unomaha.edu/
˜achurban/.
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