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Abstract

Many bacterial pathogens employ a Type Il secretion
system (TTSS) to deliver specific proteins (or ”substrates”)
into a host cytoplasm in order to interfere with defense re-
sponses and alter physiology. In this work, we present a
computational formalism for characterizing the composi-
tional properties of the Type 11l secretion signal. While vari-
ous rule sets derived from empirical observations have been
suggested, developing a consistent and comprehensive de-
scription of the TTSS signal is still of interest. This problem
differs from typical signal peptide classification and iden-
tification problems (e.g. - nuclear, chloroplast, mitochon-
drial signal peptides) because known TTSS substrates lack
the similarity expected from signal sequences involved in
a similar function (e.g. - from a multiple alignment pro-
file or signal consensus sequence). Using a training set de-
rived from empirically verified substrate sequences in Pseu-
domonas syringae, we apply divergence measures derived
from information theory in order to classify similar patterns
and characterize the Type Il signal. The TTSS character-
ization developed in this work leads to a diffuse targeting
signal confined to the first 50 amino acids starting from the
N-terminus. Finally, using the P. syringae training set, the
method is applied to verify and predict substrate candidates
in other organisms possessing a TTSS.

1 Introduction

The formulation presented here draws from research to
identify and classify substrate proteins secreted by the type
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III secretion system (TTSS) [1, 2]. Research within this
group has focused on Pseudomonas syringae pv. tomato
DC3000 [1, 4]. It has been demonstrated that the first 50
amino acids in known substrates are necessary for identify-
ing proteins that are translocated by the TTSS. While com-
positional properties have been found to be useful for de-
tecting substrate sequences, no obvious consensus sequence
or alignment appears to exist. Furthermore, cursory analy-
ses by this group indicate that TTSS substrates do not fit
into typical signal peptide models.

2 Sequence Composition Analysis

For this work, we present results based upon a train-
ing set of 35 sequences in Pseudomonas syringae pv.
tomato DC3000 known to be translocated by the TTSS
[1] and 5400 protein sequences from the same organism for
background statistics. Let W be the window size, let M be
the number of sequences and let NV be the number of sym-
bols in the encoding alphabet. In our case N = 20 in order
to represent each amino acid. Consider an M x W block of
symbols starting at sequence position m and ending at se-
quence position m + W — 1. We estimate the block symbol
probability as p; = 57 where n; is the number of times
the i*" symbol appears in the block, and make an estimate
of the entropy as

N
H, = prilongi. (D
i=1

Figure 1 shows the results of this calculation at positions
2-47 using a sliding window of size W = 3. The dot-
ted line represents the entropy estimate for the background



set which is fairly constant at about 4.1 bits (approaching a
limit of log2(20) ~ 4.3 bits). Also, observe that, at several
positions, the substrate set (dashed line) can differ in infor-
mation content from the background set by more than .5
bits. It is this information difference that we wish to exploit
in our classification algorithm.
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Figure 1: Entropy estimate using a sliding window size of
3 in positions 2-47. Dotted line represents the background
set, dashed line represents the substrate training set.

3 Information Divergence

For this work, we apply a symmetric version of the
Kullback-Liebler distance [3]. Given two discrete probabil-
ity distributions P and ) with N elements, the symmetric
Kullback-Liebler distance is defined as

Ds(PllQ) = D(P||Q) + D(Q||P) 2

where
N »;
D(P||Q) =Y _pilog, qi_
i=1 v

is generally referred to as the Kullback-Liebler distance or
the relative entropy. To characterize an unknown protein
sequence as being close or far from the substrate distribu-
tion, Dy is evaluated over a series of sliding windows. For
a given observation and window size W, we estimate the
symbol probability as {3 where n; is the number of times
the i*" amino acid appears in the window. A hard decision
about the membership of a sequence is then made at each
position according to the following algorithm. We consider
the first L = 50 amino acids of an unknown sequence. For
a window size of W, there will be K’ = L —W +1 positions
to consider. At the I*" position:

1. Construct @ by measuring ¢; = 3+ (i = 1,---,20)
for the unknown sequence.

2. Calculate D4(P*|Q) for k = 1,2 where P! is the
background distribution and P? is the substrate distri-
bution.

3. Perform a hard decision according to the rule: Choose
category 2 if Dy(P'Q) > D,(P?|Q); otherwise,
choose category 1.

Finally, to decide upon the membership of a given sequence,
examine the decision for all [ = 1,--- , K instances and
choose the majority. In other words, over K instances there
will be k; instances in favor of the background and ks in-
stances in favor of the substrate distribution. A score S is
created by taking the difference S = ki — ko. For the pur-
poses of robustness, we run our algorithm three times with
window sizes W = 1, 2, 3. For each sequence being tested,
we take the minimum score for each of the three tests.

4 Results

Using the above algorithm, results of data mining
genomes from organisms known to possess a TTSS are pre-
sented. In particular, we examine Pseudomonas syringae,
Yersinia enterocolitica and Salmonella typhimurium. In ad-
dition to identifying known substrates within these organ-
isms, candidate substrates are also indicated. Finally, ex-
perimental results indicating that this technique has isolated
a Type III secretion signal are presented.
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