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Abstract 
 

A methodology has been implemented for analyzing 
microarray and NMR spectral data obtained from the 
same set of toxic-exposure dose-response experiments.  
The NMR spectra additionally track the time course of 
exposure. Analyses consist of screening the data to 
eliminate variates with insignificant signal, 
normalization appropriate to the experimental design, 
Principal Components Analysis, and nonlinear 
classification using a Support Vector Machine.  It is 
found that exposure at subtoxic levels can be detected. 
 
1. Experiments 
 

The goal of the study reported here was to develop 
tools to characterize complex, time-evolving changes 
in gene and metabolite expression patterns as a first 
step in demonstrating the feasibility of detecting toxic-
substance exposure at very low, subtoxic 
concentrations.  The experiments, performed by the Air 
Force Research Laboratory (AFRL), Wright-Patterson 
AFB, consisted of orally dosing rats with the liver 
toxin α-naphthylisothiocyanate (ANIT) over a dose 
range of 0.1 to 100 mg/kg.  Urine samples were 
collected pre-dose and daily for 4 days for Nuclear 
Magnetic Resonance (NMR) spectral analysis. 
Microarray analysis was performed at day-4 post-
exposure on liver tissue from 29 of the 39 experimental 
animals. 

The genomic data consist of the results from 
Affymetrix RAE230A microarrays, one microarray per 

animal.  Each microarray gives 15,866 signal 
amplitudes and associated p-values corresponding to 
probe sets associated with specific genes [1].  The 
metabolomic data specifically are 600 MHz proton 
(1H) NMR spectra in which amplitudes are summed 
into 255 bins and normalized by total intensity to 
account for sample-to-sample density variations.  The 
water peak was experimentally reduced and the 
residual signal at 4.7-4.9 parts/million was zeroed out.  
The data for each animal is provided as a single file 
containing 5 spectra from urine samples taken pre-dose 
and every 24 hours for 4 days. 

 
 
2. Analysis 
 

Our analysis procedures consist of (1) screening the 
data to eliminate signals with no significant signal to 
reduce dimensionality, (2) normalizing the data [2,3], 
(3) performing Principal Components Analysis (PCA) 
[4] to characterize the data in terms of an orthogonal 
basis determined by the data covariance, and (4) 
nonlinear classification using a Support Vector 
Machine (SVM) [5] methodology [6,7]. 

In the case of genomic data, we found that the first 
two principal components are sufficient to separate the 
data.  A projection plot of the principal components is 
shown in Figure 1 (left).  For classification, we 
associated the controls and seven dosage levels into 3 
groups: controls, low dose, and high dose (high dose 
comprising the two highest dosages, which are known 
to have significant histopathological effects).  
Applying an SVM classifier with a radial basis 



function kernel to this two-dimensional data, we found 
the decision boundaries shown in the Figure when the 
one obvious low-dosage outlier was included in the 
control group.  To summarize our methodology, 
15,866 gene probe sets across 29 microarrays 
(replicates of vehicle-only controls and 7 nonzero 
dosages) were reduced to 7844 probe sets with “Signal 
Present,” then screened to the 100 most significant 
probe sets, and finally reduced to two principal 
components for which intuitively natural separation 
boundaries between control, low-level doses, and high-
level doses were found, with misclassification of one 
0.1mg/kg case. 

Metabolomic normalized signals were concatenated 
by spectral bins (255) and post-dose days (4) across all 
replicates to form a 1020-by-39 data matrix, which was 
then screened down to the 100 most significant 
bins/times.  We performed a modified analysis on just 
the controls and the low-dose cases, keeping the 100 
most significant spectral bins/times according to 
consistency between 10 and 20 mg/kg doses.  The 
result is shown in Figure 1 (right), again a scatterplot 
of the first two principal components, where the SVM 
decision boundary separates the controls and low-
dosage points except for two control and one 0.1 
mg/kg cases that are misclassified. 

In summary, as a first step in taking a systems- 
biology approach to toxic exposure, we have shown 
that roughly equivalent results can be obtained by 
applying the same analysis procedures to data from the 

genetic and organismic levels of the experimental 
subjects.  We have also developed a normalization 
methodology for combined time-course and dose-
response experiments.  Regarding the specific goal of 
the study undertaken, we have shown that signatures of 
low-level toxic exposure can be observed.   
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Figure 1.  Data from microarray analysis of liver tissue (left panel) and NMR spectra of 
urine (right panel) reduced to the first two principal components.  Contours are decision 
boundaries between controls, low doses (0.1-20 mg/kg) and high doses (50, 100 mg) 
determined by a nonlinear classifier. 


