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Prediction of a transcription start site (TSS) is one 
of the many active research areas in bioinformatics. 
The main purpose of this paper is to study the ability of 
linear classifiers for predicting a TSS. Also we have 
focused on the relationship between the length of the 
subsequences surrounding TSS and their effectiveness. 

 
1. Introduction 

 
Prediction of a transcription start site is one of the 

many active research areas in bioinformatics. If we can 
identify a transcription start site (TSS) from a given 
DNA sequence, we can infer the start of a coding 
region of a gene. The detection of a promoter, which 
involves the identification of all the relevant 
transcription binding sites and the TSS, is a 
challenging task and the many approaches that were 
proposed to solve the problem yield high false positive 
ratio in the order of 29 to 72%[1] . 

 To understand and to improve the very high false 
positive ratio of promoter detection, we investigate the 
composition of the sequences around transcription start 
sites of the following genomes:  human, rat and mouse.  
The have developed an algorithm using positional 
weighted matrix (PWM) to estimate the prediction 
accuracy of a TSS using any linear classifiers and we 
have verified the results using a popular linear 
classifier, Naïve Byes.  

For this study, we have used the annotated promoter 
sequences of human genome (33,961 promoters), rat 
genome (5,705 promoters) and mouse genome (22,549 
promoters) that were downloaded from the site 
http://biowulf.bu.edu/zlab/promoser/download.html, 
each contains 2000bp upstream and 100bp downstream 
of a transcription start site.  

 
2. The Algorithm and the Method 

 
The objective is to understand the composition of 

the neighboring subsequences of a transcription start 
site of all the promoters in a genome and the effect of 
the size of the sequences surrounding a TSS in 

distinguishing themselves from the rest of the 
sequences. In this section, we briefly outline the basis 
of PWM [2] and naïve Bayes method [2]. The PWM 
involves the positional frequency distribution of each 
nucleotide associated with a pattern and it also 
involves in comparing the distribution of a pattern with 
the background (the absence of the pattern).  

Let a string, say e-k,e-k+1,…e-1,e1,..,ek, represents k 
nucleotides upstream and downstream from a 
transcription start site (TSS). Then P(tss|e-k,e-k+1,…e-

1,e1,..,ek) and P(¬tss| e-k,e-k+1,…e-1,e1,..,ek) respectively 
represent the conditional probability of the sequence 
being a TSS or not.  Note that each  er takes one of 
{a,c,g,t}. The likelihood ratio   

 
The log likelihood ratio of a nucleotide at a 

particular location, say nucleotide g at position r 
denoted by log(P(er=g|tss)/P(er=g|¬tss)), is represented 
by a weight in a  matrix corresponding to the 
nucleotide and the location (g and r).  

Naïve Bayes method classifies a subsequence as a 
TSS, if the conditional probability P(tss|  e-k,e-k+1,…e-1, 
e1,..,ek) > P(¬tss|e-k,e-k+1,…e-1,e1,..,ek).  To avoid 
underflow in the computation of the conditional 
probability, log of the conditional probabilities are 
computed and compared.  

When using either one of these methods, the prior 
probabilities of P(tss) and p(¬tss) must be computed. 
The objective of any detection algorithm is to improve 
the prediction accuracy while minimizing the false 

P(tss|e-k,e-k+1,…e-1,e1,..,ek)/P(¬tss|e-k,e-k+1,…e-1,e1,..,ek ) 
is  rewritten using Bayes  theorem [2] as 
=P(tss,e-k,e-k+1,…e-1,e1,..,ek)/P(¬tss,e-k,e-k+1,…e-1, 
e1,..,ek  ) 
Using chain rule and applying  positional 
independence  
= P(ek|tss)...P(ek-1|tss)..P(e-k|tss).P(tss) /(P(ek|¬tss). 
P(  ek-1 |¬tss)..P(  e-k |¬tss).P(¬tss)) 

The log likelihood ratio becomes 
Log(P(tss/sub_sequence)/P(¬tss/sequence)) 

= C + ∑(log(P(er|tss)/ P(er|¬tss)) for all r from –k 
to k,  where C is a constant representing 
log(P(tss)/P((¬tss). 



positive and false negative ratios. From all the positive 
and negative instances of the training sets, obtain the 
log likelihood ratios and their positive and negative 
frequency distributions. If the distributions overlap, the 
best prediction accuracy occurs at the intersection of 
these two distributions [3]. The threshold point that 
maximizes the prediction accuracy of the training set is 
used for testing.  

 
4. Experiment and Empirical Results 

 
We have used human, rat and mouse genome to 

understand the composition of the subsequences 
around a transcription start site of each genome. The 
background probability distributions of the nucleotides 
are obtained by computing the occurrences of each 
nucleotide in the sequences that do not overlap with the 
TSS sequences.  

We have started experimenting with human genome 
with subsequences of length 20bp around a 
transcription start site, 10bp in the downstream and 
10bp in the upstream of the TSS. From all the 33,961 
promoter subsequences around a TSS of human 
genome, we have computed positional probability 
distribution of each nucleotide (note that a TSS is at 
position 1).  

We have repeated the experiment for subsequences 
of length 20bp for the mouse and rat genome and 
computed the weight distributions for TSS and non 
TSS for each genome. We computed the prediction 
accuracy by calculating the areas corresponding to the 
false positive and false negative as have been 
illustrated in [3].  The estimated prediction accuracy 
for sequence of length 20 (-10 to +10) around TSS of 
different genome is shown in Table 1. 

 
Naïve Bayes Method  

Genome Mean 
Value  

Standard 
Deviation 

Estimated 
Prediction 
accuracy  

Human 61.36% 2.208 62.61% 

Rat 65.95% 1.803 65.87% 

Mouse 68% 1.934 68.13% 
Table 1: Estimated prediction accuracy is compared 
with that of naïve Bayes.  

 

4.1. Influence of the Length of 
Subsequences on Prediction Accuracy 

 
Now we can study the influence of the length 

around TSS in the prediction accuracy. We have 
conducted experiments for different length of 
subsequences around the TSS from 6bp to 20bp in the 
downstream and in the upstream and have estimated 
the prediction accuracy using the method that we have 
outlined. The relationship between the prediction 
accuracy and the length of subsequences are shown for 
each genome in Figure 1. 
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Figure1: Influence of sequence length on the 

prediction accuracy for different genome 
 

5. Summary and Conclusion 
 
We have presented an algorithm based on PWM to 

estimate the prediction accuracy of any linear 
classifiers. Our estimated prediction accuracy agrees 
with that of obtained by a naïve Bayes classifier as has 
been shown in Table 1. We also have investigated the 
influence on the length of the subsequences 
surrounding a TSS on the prediction accuracy. The 
subsequences varied from 12 through 40 in steps of 4 
(starting from -6 , +6 to -20 , +20 in step of 2). The 
length has positive influence on the prediction 
accuracy.  
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