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Prediction of a promoter is one of the many active 

areas of bioinformatics. The outcome of a promoter 
detection algorithm is directly or indirectly influenced 
by the success of identifying the location of a TATA 
box in a promoter sequence. A profiling technique is 
very often used to find putative TATA boxes, but 
discriminating a TATA box from putative TATA boxes 
is still a challenging problem. In this work, we 
formulate the problem and provide solutions using 
both a linear and a non linear classifiers.  

 
1. Introduction 
 

The outcome of a promoter prediction algorithm is 
dependent on correctly identifying a TATA box since 
the location of a TATA box influences the location of a 
transcription start site (TSS). The core TATA box, 
which is defined by the consensus sequence 5’-
TATAWAW-3’, matches with several subsequences of 
a genomic sequence and these matched subsequences 
are called putative TATA boxes. The W stands for 
either A or T.  The problem of detection of a TATA 
box becomes the problem of discriminating a TATA 
box from putative TATA boxes. Our previous study on 
TATA and TATA less promoters[1] revealed that the 
surrounding substrings have the key in discriminating a 
TATA box from putative TATA boxes.  To study this 
problem, we have selected the annotated plant 
promoter sequences from PlantProm database that 
consists of plant TATA and TATA less promoters. The 
main purpose of this investigation is to study the 
composition of the subsequences surrounding a TATA 
box and their abilities to identify a TATA box from a 
set of putative TATA boxes. Also we have focused on 
studying the influence of the length of the 
subsequences in the discrimination.  

The problem of discriminating a TATA box from 
putative TATA boxes becomes a classification 
problem using the surrounding substrings of a putative 
TATA box. We have selected a linear classifier naïve 

Bayes[2] and a non linear classifier an artificial neural 
network (ANN)[2], for their effectiveness in 
classifying patterns. The training and testing data sets 
were created from the positive and negative instances 
of the surrounding genomic substrings.  

The effectiveness the naïve Bayes depends on the 
correct estimates of the prior probabilities and many 
systems compute the prior probabilities from the 
training sets which do not reflect the true prior 
probabilities. Instead of finding a way to correctly 
estimate the prior probabilities, we focused on finding 
a threshold decision point that maximizes the overall 
prediction accuracy [3]. With the optimal decision 
threshold, the naïve Bayes classifier had outperformed 
the results of that of a neural network. 
 
2. Review on Basic Techniques 

 
Let a string, say e-k,e-k+1,…e-1,Core-Tata,e1,..,ek, 

represents k nucleotides (e-k,e-k+1,…e-1) upstream and 
(e1,..,ek) downstream from a core TATA box.  Then 
P(tata|e-k,e-k+1,…e-1,e1,..,ek) and P(¬tata|e-k,e-k+1,…e-

1,e1,..,ek) respectively represents the conditional 
probability of a TATA or a non TATA for the 
surrounding sequence e-k,e-k+1,…e-1,e1,..,ek. Each er 
takes one of {a,c,g,t}.  

 

P(tata|e-k,e-k+1,…e-1,e1,..,ek) 
is  rewritten using Bayes  theorem [2] as 
=P(tata,e-k,e-k+1,…e-1,e1,..,ek)/P(e-k,e-k+1,…e1,e1,.., ek  ) 
Using chain rule and applying  positional 
independence  
=C”.P(ek|tata).P(ek-1|tata)..P(e-k|tata) where C” is  
P(tata) / P(e-k,e-k+1,…e1,e1,.., ek  ) 
Log(P(tata/sub_sequence) 
= C + ∑(log(P(er|tata)/ P(er|¬tata)) for all r from –k to 
k,  where C is a constant representing log(P(tata)/ 
P(e-k,e-k+1,…e1,e1,.., ek  )). 



To determine whether a sequence surrounds a 
TATA, we compare the posterior probabilities. If  
P(tata| e-k,e-k+1,…e1,e1,.., ek) > P(¬tata|e-k,e-k+1,…e1,e1,.., 
ek ), the sequence is classified as a TATA as has been 
defined by maximum posteriori hypothesis or a MAP 
hypothesis.  

 
2.2 Detection of TATA Box 
 

The consensus sequence of a TATA core, which is 
given by 5’-TATAWAW-3’ where W is either a or t, 
alone does not help to detect a TATA box.  The TATA 
box is usually determined by positional weighted 
matrix constructed from a profile. We have used the 
profile of a TATA box of plant genome presented in 
[4]. The background probability of a nucleotide at any 
position is taken to be 0.25.  

 
2.3 Artificial Neural Networks 
 

A feed forward multi-layer back propagating neural 
networks have been used for many applications 
involving pattern recognition and prediction purposes 
in bioinformatics [2].   

The training and the test sequences consist of 
nucleotides of offset k around TATA box or putative 
TATA boxes and each of these sequences is modeled 
as a string of length 2k with alphabets a,c,g and t 
representing possible nucleotides.  

A neural network tends to trap into a local 
minimum that prevents the network to achieve the best 
convergent state during training. By using momentum 
with training, we can reduce the local minima trap. By 
trial and error approximation, we have set the learning 
rate to 0.05 and the momentum coefficient to 0.1.  

 
3. Experiments 
 

We have downloaded promoter sequences of plant 
genome from PlantProm DB 
(http://mendel.cs.rhul.ac.uk/mendel.php?topic=plantpr
om), an annotated non-redundant collection of 
proximal promoter sequences.  

We started the experiment with the collection of all 
TATA boxes in the annotated promoters. The 
neighboring strings in the upstream and the 
downstream of a TATA promoter become the positive 
training subsequences. Similarly, we have detected all 
the putative TATA boxes from all the non TATA 
promoters and collected the substrings from both the 
upstream and the downstream of the putative TATA 
boxes. These strings form the negative instances.  

We have computed mean values of classification 
accuracy, true positive and false positive along with 
their standard deviations for the 30 test sets (note that 

the training and the test set are disjoint).  The results 
are shown in Figure 1. 
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Figure 1: Comparison of Bayes with ANN 

 
4. Summary and conclusion 

 
Both the naïve Bayes and a three layered neural 

network were trained and tested with the same training 
and test data sets. From the graph in Figure 1, it is clear 
that the naïve Bayes with optimal threshold 
outperformed the neural network. From the empirical 
tests, we can draw few conclusions: (1) the naïve 
Bayes method outperformed a neural network 
classifier, (2) the length of the substrings surrounding a 
putative TATA box have some influence on the 
outcome and the best results occurred with the offset of 
9 bp.  Even though, the results are specific to the plant 
genome, the approach is general enough to be used for 
other applications involving discriminating any pattern 
from putative patterns found in sequences.  
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