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Abstract 
 

The identification of cis-regulatory elements and 
modules is an important step in understanding the 
regulation of genes. We have developed a pipeline 
capable of running multiple motif prediction methods 
on a whole genome scale.  

Using gene expression datasets to identify co-
expressed genes and the Ensembl Compara database 
orthologues, we assemble input sequence sets 
comprised of the upstream regions of a target gene, its 
orthologues and co-expressed genes on the premise 
that such genes will share promoters by evolution 
(orthologues) or share regulatory control mechanisms 
(co-expressed genes). Co-expressed genes are 
identified by an approach that combines Pearson 
distances from multiple gene expression datasets 
derived from multiple experimental approaches and 
calibrated against the GO database. Our pipeline runs 
a number of established motif detection algorithms 
with a range of parameter settings on the input dataset. 
We integrate the diverse result sets by scoring motifs 
with a method-independent function. For each target 
gene, we assign p-values to the motif score by running 
the discovery pipeline on multiple sets of input 
sequence containing the target gene, non-coexpressed 
genes and “fake” orthologues generated by neutral 
numerical evolution.  

We have predicted 30,636 motif binding sites in 
human for 4,182 genes and an initial set of 472 motif 
binding sites in mouse for 92 genes with p < 0.001. 
The positive predictive value against a library of 
biologically confirmed regulatory sites approaches 0.4 
at the highest p-value threshold. 

Predicted regulatory elements and other resources 
from the project are available at www.cisred.org.  
 

1. Introduction 
 

The identification of cis-regulatory elements, the 
sites to which transcription factors bind and thereby 
control gene expression, remains a difficult task. Many 
methods have been created, each with its own 
advantages and disadvantages and, in general, these 
methods have a low positive predicative value (PPV) 
and low sensitivity (Sn) [1].  

Rather than create a new method, we have chosen to 
focus our efforts on refining the input dataset and 
developing methods to assess the validity of the 
analysis. We describe a high-throughput discovery 
system that predicts regulatory elements for 
mammalian genomes using a suite of regulatory 
element prediction algorithms. We have developed a 
framework for identifying and incorporating co-
expressed and orthologous input gene sets.   
 
2. Materials and Methods 

 
2.1 Construction of Input Gene Sets 
 

For each target gene, a set of orthologous and co-
expressed genes are identified. Orthologous genes are 
identified by combining data from a number of 
databases including ENSEMBL Compara[2] and 
KEGG[3]. Putative orthologues for unannotated 
genomes are also included. 

We identify co-expressed genes using public gene 
expression data from many sources, utilizing the 
Pearson Correlation coefficient to detect genes with 
similar patterns of expression [4]. 

The input set comprises the upstream regions of the 
target gene, the orthologous genes and co-expressed 
genes are extracted (1500 base pairs after removal of 
repeat regions). Further work is underway to improve 
the identification of the transcriptional start site. 

 



2.2 Generation of a Background Model 
 

For each target sequence set, we generate a large set 
of ‘random’ sequences. Co-expressed genes are 
replaced genes with no co-expression relationships to 
the target gene and synthetic orthologous sequences are 
generated by DUNE, a neutral evolution simulator that 
transforms a target sequence without the influence of 
selective constraints. 

The random gene sets are used to provide a measure 
of the false discovery rate of motifs.   
 
2.3 Parallel discovery runs using multiple 
methods 
 

We run a number of motif discovery methods 
(presently Meme[5], Consensus[6], MotifSampler[7]) 
on the input and random gene sets. Each method is run 
under a variety of parameter settings to improve 
sensitivity. This part of the pipeline requires the most 
CPU and is run over a ~400 CPU computing cluster. 
Despite these resources, the pipeline requires several 
weeks to generate genome wide results. 

 
2.4 Scoring and assignment of confidence 
values to motifs 

  
Discovered motifs from a target set and its random 

sequence sets are assigned method-independent (MI) 
scores. The MI-scoring function is optimized against a 
library of biologically known transcription factor 
binding sites (KSL). The current KSL is derived from 
TRANSFAC v9.1 and comprises 758 sites for 177 
genes. For each target gene, we use the distribution of 
MI motif scores from the random set to transform MI 
scores for target set motifs into p-values. 

 
3. Results and Discussion 

 
Predictive runs have been completed on a set of 

4,182 human genes yielding 30,636 binding sites with 
p < 0.001. For these sites, there are 19,387 unique 
consensus sequences. Further work is underway to 
improve the clustering of similar motifs.  

Figure 1 plots the nucleotide-level specificity and 
sensitivity and site-level PPV for the motifs as a 
function of their p-value. We consider a prediction to 
covers a site if there is at least a three base pair 
overlap. 
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Figure 1. Method’s performance against a set of 

known sites 
 

Although, the PPV for our method is high, 
approaching 0.4 at a more stringent p-value cutoff, the 
sensitivity remain low. With the prediction pipeline in 
place, we plan to refine our input sets, background 
model, parameter setting and method used against the 
KSL to improve sensitivity and the PPV. 
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