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Abstract 
 

We describe a new method to predict the tertiary 
structure of new-fold proteins. Our two-phase 
approach combines the knowledge-based fragment-
packing with the minimization of a physics-based 
energy function. The method is one of the few attempts 
to use an all-atom physics-based energy function 
throughout all stages of the optimization. Information 
from the known proteins is utilized to guide the search 
through the vast conformational space. We tested this 
method in CASP6 and it produced the best prediction 
on one of the new-fold targets – T238, alpha-helical 
protein. After CASP6, we carried out a series of 
experiments to test and improve our method and we 
found that our method performed well on alpha-helical 
proteins.  
 
 
1. Introduction 
  

Significant progress has been made in developing 
methods that have the ability to predict the tertiary 
structure of proteins that are considered to be “new 
fold” (i.e., proteins whose tertiary structure has little 
similarity to any known structure) from the primary 
sequence alone. Fragment-based methods have been 
widely applied to the prediction of proteins with new 
folds [1,2]. The search strategies used by the fragment-
based methods vary, but most of the fragment-based 
methods use statistical-based potential (or scoring) 
functions [2]. Very few prediction methods utilize 
physics-based potentials [3]. The limitations of the 
template-based approaches suggest that fragment-
based methods should be combined with ab initio 
methods to improve their performance [4]. 

We describe a new two-phase method to predict the 
tertiary structure of new-fold proteins via minimization 
of a physics-based energy function combined with 

knowledge-based fragment packing. Our approach is 
one of the few attempts to use an all-atom physics-
based energy function throughout all stages of the 
optimization [3]. It uses information from known 
proteins to guide the search through the vast 
conformational space. There are three crucial 
components in this novel approach: (1) a technique for 
packing structural fragments which uses templates 
from fold-recognition servers in a unique way, (2) a 
sophisticated global optimization algorithm used to 
minimize a full-atom potential and (3) an in-house 
graphical environment created specifically for both 
manual and automatic manipulation of protein 
structures. 
 
2. Methodology 
 

Our method has two phases. Phase I is the 
knowledge-based fragment packing phase, and phase II 
is the physical-based global optimization phase.  

Phase I creates a variety of initial configurations 
by incorporating knowledge from known proteins in 
two ways: (1) by using secondary structure predictions 
and structural templates of known proteins [5], and (2) 
by using probabilistic results of both protein-fold 
topology [6] and sequence matching specificity [7]. 
First, it creates an initial, extended configuration that 
has alpha-helices and beta strands according to the 
secondary structure predictions. This extended 
configuration is split into fragments, each containing a 
single alpha-helix or beta-strand, and two coils at both 
ends. The size of the structural fragments is not fixed. 
The fragments are manually packed using our in-house 
graphical environment, ProteinShop [8], according to 
templates obtained (if any) from the fold recognition 
meta-servers using the initial sequence of amino acids 
as a query. In addition to those manually constructed 
initial configurations, we also utilize ProteinShop to 
automatically produce a collection of high probability 
sheet conformations guided by the statistical scoring 



functions derived from both protein-fold topology and 
sequence matching specificity. All the starting 
configurations are local minima before going to the 
Phase II.  

Phase II improves the initial configurations by 
applying a sophisticated optimization algorithm that 
optimizes selected subspaces of the predicted coil 
regions in parallel. The method selects a number of 
low-energy configurations from the list of initial 
structures and then selects small subsets of variables 
for improvement by global minimizations. A subset of 
variables consists of a number of consecutive dihedral 
angles picked from the set of amino acids predicted to 
be coil by the secondary structure predictions. Once the 
subset is determined, a stochastic global optimization 
procedure is executed to find the best new positions for 
the chosen dihedral angles while holding the remaining 
dihedral angles fixed. A number of those 
configurations with the lowest energy values are 
selected for local minimizations in the full-dimensional 
space. These full-dimensional local minimizations are 
less likely to produce major structural changes but can 
cause important, more local refinements throughout the 
protein structure. The new full-dimensional local 
minimizers are then merged with those found 
previously, and the entire process repeats iteratively 
until the lowest energy configuration does not change 
substantially after a number of iteration steps.  
 
3. Experiments and Discussion 
  

In CASP6, our method produced the best 
prediction on one of the targets in the new-fold 
category, T238, an alpha-helical protein. However, the 
method did not perform consistently well due to the 
problems in our implementation of the energy function. 
After CASP6, we changed the energy function and 
carried out a series of experiments to test the 
performance of our methods on the alpha-helical 
proteins. We “re-predicted” the alpha-helical targets of 
CASP5 and CASP6. By “re-predict”, we mean that we 
used the PDB information back to the date before the 
native structure of the target was released. For each 
target, we analyzed the results at each phase to track 
the performance of the method. We calculate the 
GDT_TS score [9] to quantitatively evaluate the 
overall similarity between the model and the native 
structure. Table1 lists the GDT_TS score of the best 
model generated in phase I and phase II and also lists 
the GDT_TS scores of the best CASP prediction on the 
corresponding target. T248_1 and T248_3 are alpha-
helical proteins and classified as hard fold-recognition 
targets, and included here for comparison purposes. 

 
 

Table 1.  GDT_TS Scores Comparisons 
Best GDT_TS score Target 

ID Phase I 
models 

Phase II 
models 

Best CASP 
prediction 

T129 19.94 24.41 37.94 
T170 48.91 55.80 64.85 

T172_2 20.79 25.25 31.68 
T238 29.87 30.66 29.28 

T248_1 34.18 36.08 68.35 
T248_2 42.53 43.10 50.00 
T248_3 36.21 43.39 50.00 

 
We noticed that the models constructed in the 

phase I, for most cases, grasp the partially correct 
folding information, but that phase II did not bring 
enough improvements on the models of phase I. We 
also found that inaccuracy of the secondary structure 
prediction decreased the performance of our method.  

Several aspects of our method need improvement. 
We are trying a new approach to minimizing the errors 
introduced from inaccurate secondary structure 
predictions. We are looking into ways of improving 
phase II by using alternative energy functions with 
better discriminative ability. In addition to that, more 
efficient methods for sampling the dihedral angle space 
are under development. New approaches for clustering 
and filtering the models generated from phase II are 
also under test.  
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