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Abstract 
 

Automated backbone resonance assignment is very 
challenging because NMR experimental data from dif-
ferent experiments often contain errors. We developed 
a method, called GANA, which uses a genetic algo-
rithm to perform backbone resonance assignment with 
high precision and recall. GANA takes spin systems as 
input data, and assigns spin systems to each amino 
acid of a target protein. We use the BMRB dataset 
(901 proteins) to test the performance of GANA. We 
also generate four datasets from the BMRB dataset to 
simulate data errors of false positive, false negative, 
linking error, and a mixture of the above three cases to 
examine the fault tolerance of our method. The aver-
age precision and recall rates of GANA on BMRB and 
the four simulated test cases are above 95%. Further-
more, we test GANA on two real wet-lab datasets: 
hbSBD and hbLBD. The precision and recall rates of 
GANA on these two datasets are 95.12% and 92.86% 
for hbSBD and 100% and 97.40% for hbLBD. 
 
1. Introduction 
 

Nuclear Magnetic Resonance spectroscopy (NMR) 
provides an alternative method to X-ray diffraction for 
determining the three-dimensional structures of pro-
teins in atomic resolution. Researchers usually conduct 
several 3-D NMR experiments such as CBCANH, 
CBCA(CO)NH, or HN(CO)CA on 13C/15N/1HN-
labeled proteins, and 2-D NMR experiments such as 
HSQC on 15N/1HN-labeled proteins. The first require-
ment for these studies is sequential resonance assign-
ment on backbone structures.  

In the past, biologists had to make backbone as-
signments manually or semi-manually during the proc-
ess of spectra analysis. Therefore, many automated 
tools using computational technologies have been de-
veloped to deal with the problem. However, NMR ex-
perimental data often contain the following four types 

of errors: noise (false positives), missing peaks (false 
negatives), clustered peaks, and inconsistent results 
among different experiments. As these four types of 
data errors appear in the NMR spectra, the process of 
automated backbone resonance assignment is very 
challenging.  
 
2. Methods 
 
We use HSQC, CBCANH, and CBCA(CO)NH spec-
tral data to assign chemical shifts to N, HN, Cα and Cβ 
atoms on the backbone structure of a target protein. 
Cross-referencing the HSQC, CBCANH, and 
CBCA(CO)NH peaks for the i-th residue, we can gen-
erate two consecutive spin systems, i.e., an inter-spin 
system, denoted by SSinter(i), and an intra-spin system, 
denoted by SSintra(i). SSinter(i) contains the chemical 
shifts of Cα

i−1, Cβ
i−1, and HN

i, Ni, and SSintra(i) contains 
the chemical shifts of Cα

i, Cβ
i and HN

i, Ni. 
We use SSGroup to denote a set of two consecutive 

spin systems in which all systems have identical 
chemical shifts of HN and N. We construct two data 
structures: (1) candidate lists to record potential 
SSGroups for each residue in a target sequence; (2) 
adjacency lists for each SSGroupi to express the con-
nectivity relationships between SSGroupi and all other 
SSGroupj. 

Resonance assignment is to assign SSGroups to the 
protein sequence one by one such that the intra-spin 
system of (i-1)-th residue is similar with the inter-spin 
system of i-th residue. The fitness score of an assign-

ment is given by ∑
=

l

i
iLS

1
)( , where LS(i) is the linking 

score of i-th residue with (i-1)-th and (i+1)-th residues 
and l is the length of the protein (details omitted). 

We use candidate lists and adjacency lists in basic 
operations of our genetic algorithm to find the assign-
ment with largest fitness score among large different 
orderings of SSGroups (details omitted).  



 
3. Experimental results 
 

The parameters used in each single round of GANA 
are as follows: the number of chromosomes in each 
generation = 600, the number of generations for evolu-
tion in a single round = 500. Because GAs may fall 
into a local maximum, we perform multiple rounds to 
select the chromosome with the highest fitness score as 
the final assignment for each protein. We test GANA 
on different datasets including BMRB, real wet-lab 
datasets and synthetic datasets. 

After downloading the full BMRB dataset contain-
ing 3,129 proteins on September 10, 2004, we chose 
proteins of length 50 to 400 that have at least 50% 
residues with known answers as our dataset. The re-
sulting dataset contains 901 proteins. For each test pro-
tein, we generate simulated SSGroups according to the 
chemical shifts assigned to each residue.  

The single round precision and recall of GANA on 
the BMRB dataset are 99.27% and 98.88%, respec-
tively; and those after ten rounds are 99.40% and 
99.08%, respectively. 

We also use two real wet-lab datasets: the substrate 
binding domain of BCKD (hbSBD) and the lipoic acid 
bearing domain of BCKD (hbLBD, [2]). Each one con-
tains more than 50% false positives and false nega-
tives. The single round precision and recall of GANA 
on hbSBD are 95.12% and 92.86%, respectively; and 
those of hbLBD are 100% and 97.40%, respectively. 

We regard the data from the raw BMRB dataset as 
the perfect case. To simulate real-world noises, we 
modify the original BMRB data to generate four kinds 
of synthetic cases: false positive, false negative, link-
ing errors, and a mixture of these three test cases. Since 
the error type of clustered peaks is primitive in the 
original BMRB dataset, we don’t simulate it. 

For false positive cases, we add synthetic intra- and 
inter-spin systems into the SSGroups. To create false 
negative cases, we assume that some CBCA(CO)NH 
peaks are missing. In this situation, we cannot recog-
nize which Cα or Cβ peak in CBCANH experiments 
belongs to the inter-residue. Thus, we generate all pos-
sible combinations of spin systems to solve the prob-
lem. For linking error cases, we modify the Cα and Cβ 
chemical shifts of the inter-spin systems for all 
SSGroups.  

The experiment results of GANA on these synthetic 
datasets are listed in Table 1. 

 
Table 1. Experiment results of GANA on different 

cases and rounds 
 1 round 10 round 

Testing Cases P R P R 

False Positive 99.22 98.85 99.36 99.00 
False Negative 98.89 98.37 99.11 98.69 
Linking Errors 97.85 97.03 98.30 97.53 

Mixture 95.81 94.89 97.12 96.36 
P and R denote the precision and recall, respectively. All 
values are percentages (%). 

 
We compared GANA with PACES [3] and Mars [4] 

on the datasets specified in their papers. GANA and 
PACES perform well on the BMRB datasets. In the 
synthetic dataset of linking errors, the precision and 
recall rates of this data set are 95.24% and 85.74% for 
PACES and 97.82% and 97.12% for GANA, where 
GANA has a much better recall. Furthermore, the re-
call rates of MARS and GANA are 93.65% and 
96.55%, respectively. 
 
4. Conclusion 
 

In this paper, we present a genetic algorithm GANA 
for backbone resonance assignment which is fully 
automatic. Under the same testing condition and data 
set, GAGA outperforms PACES and Mars especially 
in the recall rates. Recall indeed represents the accu-
racy of an assignment system. The higher recall of 
GANA can be attributed to its two data structures: can-
didate lists and adjacency lists. GANA takes spin sys-
tems as input data, and uses these two data structures 
to assign the spin systems to amino acids of a target 
protein. This design enables GANA to correctly map 
nearly all spin systems onto a target protein. Thus, the 
recall rates of GANA are generally high. 
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