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Abstract 
 
Recent advances in the ability to discriminate between 
homologous and non-homologous proteins in the 
“Twilight Zone” of sequence similarity, must be 
accompanied by accurate alignments if they are to be 
of value to molecular modelers. Pairwise alignments 
require a measure of evolutionary distance, 
traditionally modeled using global amino acid 
substitution matrices. But real differences in the 
likelihood of substitutions may exist for different 
structural contexts within proteins, since structure 
contributes to the selective pressure. HMMSUM 
(HMMSTR-based SUbstitution Matrices) is a new 
model for structure-dependent amino acid substitution 
probabilities consisting of a set of 281 matrices, one 
for each of the sequence-structure contexts defined in 
HMMSTR (a Hidden Markov Model for protein 
STRucture). HMMSUM does not require the structure 
of the protein to be known, using HMMSTR  
predictions instead. Alignments using the HMMSUM 
compare favorably BLOSUM50 alignments when 
validated against curated remote homolog alignments 
from BAliBASE.  
 
1. Introduction 
 

Amino acid substitution matrices are evolutionary 
models that seek to explain the cost of mutating any 
one of the twenty amino acids to any other, relative to 
the cost of not mutating. The most widely used 
substitution matrices, such as PAM [5] and BLOSUM 
[6], are derived from high confidence multiple 
sequence alignments. Counting statistics are used to 
estimate the frequency of each possible mutation, and a 
ratio of the observed mutation probability to the 
probability one would expect by chance is calculated. 
The logarithm of this likelihood ratio is the number we 
use when scoring pairwise alignments such as those 
generated by Dynamic Programming algorithms (for 
example, LALIGN [7]) and by database search 
algorithms.  

 
2. Methods 
 
2.1. Local structure predictions 
 

The observed amino acid substitution frequencies 
were summed from a non-redundant training set 
(PDBselect25) of multiple sequence alignments 
(MSAs) produced by searching the ‘nr’ protein 
database using PSI-BLAST [1], with e-value cutoff 
0.001. Sequence weighting [9] was used to correct for 
unbalanced sampling within an MSA. 

HMMSTR [4] assigns structural descriptors to each 
position in each MSA. HMMSTR takes as input the 
sequence profile, and optionally the protein structure 
expressed as backbone angles, and produces as output 
a set of conditional probabilities γqt=P(q|t), for each 
sequence position t. Each state q = 1..281 represents a 
position in one of the I-sites local structure motifs [3].  
 
2.2. Structure-dependent substitution matrices 
 

Substitution and background frequencies were 
summed in a manner similar to the one described 
earlier for BLOSUM, except that sequence weights 
were used instead of binning similar sequences. Also, 
in our case γ-values were used as positional weights in 
order to separate the substitution counts into 
HMMSTR states.  
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where f depends on the sequence weights. The 
observed substitution frequencies F are normalized to 
give probabilities P(i,j|q). The ratio of the observed 
and expected substitution frequencies is used as the 
alignment score.  

For the expected frequencies of substitution, we 
considered two models, called “Dayhoff” (D) and 
“Lipman” (L) in the spirit of two classic bioinformatics 
experiments for estimating expectation values for 



sequence alignments [5,8]. Our D-model assumes that 
the expected frequency of substitution is not dependent 
on the structure. Our L-model uses the structural 
context to estimate the expected frequency, assigning a 
different background amino acid frequency distribution 
to each HMMSTR state.  
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A structure-dependent, weighted combination of the 
substitution scores gives the number used (as a log-
likelihood ratio, LLR) in the dynamic programming 
alignment matrix A . For example,  
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where ai is the ith position of sequence a. To calculate 
the LLR match score Aij in the alignment matrix, the 
value in Eq 4 is divided by the expected value (Eqs 2 
and 3), and we take the logarithm. Alignments were 
carried out using Smith-Waterman local Dynamic 
Programming. Gap penalties and matrix bias were 
optimized over the sequences being used to validate 
the method. Therefore we report the optimal alignment 
accuracy for all methods. 
 
3. Results 
 

To assess the performance of HMMSUM models 
compared to BLOSUM50, we used a well-documented 
benchmark database of alignments, BAliBASE [2]. We 
used 167 MSAs, having a total of 33,977 “True” 
matches. The alignments have similarity in the 
“twilight-zone” range (from 7-25% percent identity). 
All alignments are based on three-dimensional 
structural superpositions.  

Table 1 shows the accuracy and coverage for 
correctly aligned positions. The statistical significance 
(P-value) of the differences between methods was 
evaluated using the Wilcoxon Signed-Rank Test [10].  

Better pairwise alignments will lead to better 
multiple sequence alignments and more sensitive 
database searches. 
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Table 1. Comparison of HMMSUM substitution matrices 
with BLOSUM50. 
 


