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Abstract 
 

We developed a machine learning system for 
determining gene functions from heterogeneous 
sources of data sets using a Weighted Naive Bayesian 
Network (WNB). The knowledge of gene functions is 
crucial for understanding many fundamental 
biological mechanisms such as regulatory pathways, 
cell cycles and diseases. Our major goal is to 
accurately infer functions of putative genes or ORFs 
(Open Reading Frames) from existing databases using 
computational methods. However, this task is 
intrinsically difficult since the underlying biological 
processes represent complex interactions of multiple 
entities. Therefore many functional links would be 
missing when only one or two source of data is used in 
the prediction. Our hypothesis is that integrating 
evidence from multiple and complementary sources 
could significantly improve the prediction accuracy. In 
this paper, our experimental results not only suggest 
that the above hypothesis is valid, but also provide 
guidelines for using the WNB system for data 
collection, training and predictions. The combined 
training data sets contain information from gene 
annotations, gene expressions, clustering outputs, 
keyword annotations and sequence homology from 
public databases. The current system is trained and 
tested on the genes of budding yeast Saccharomyces 
cerevisiae. Our WNB model can also be used to 
analyze the contribution of each source of information 
toward the prediction performance through the weight 
training process. The contribution analysis could 
potentially lead to significant scientific discovery by 
facilitating the interpretation and understanding of the 
complex relationships between biological entities. 
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1. Introduction 
 

A primary goal of molecular biology is to 
understand the functional role of molecular machinery 
and their interactions. Traditional biological 
approaches to determining gene functions mainly focus 
on testing specific hypotheses through ingeniously 
designed experiments (see examples in [1, 2]). 
However, methods of this kind suffer from the high 
cost of labor and funds so that they typically do not 
scale well to deal with the great complexity of 
biological systems. Genome-scale sequencing and 
microarray projects provide researchers a big picture 
of genome structure and behavior. This big picture 
offers the opportunity to study functional genomics in 
an alternative way, that is, the machine learning 
approach. Machine learning takes advantage of the 
increasingly cheaper computing resources and rapidly 
growing biological databases. Successful machine 
learning methods include gene recognition, motif 
finding, gene clustering, gene function classification, 
protein profiling, regulatory networks reconstruction, 
and so on (reviewed in [3]).  

This paper addresses the problem of inferring gene 
functions by integrating biological information such as 
DNA sequences, expressions, gene structures, database 
annotations and homologies. This problem can be 
viewed as a function classification of new genes or 
Open Reading Frames (ORFs) using heterogeneous 
sources of information. Gene function prediction has 
long been a difficult problem. Earlier studies focus on 
classification of gene functions based on single source 
of data such as protein homology and gene 



expressions. It is reported that Support Vector 
Machines (SVMs) and K-Nearest Neighbors (KNNs) 
offer the best prediction performance among other 
methods using gene expression data [4-7]. However 
the studies also showed that the prediction accuracy is 
generally poor even with SVMs and KNNs, which can 
only achieve about 40% accuracy. Homology based 
methods can be regarded as a special case of KNNs 
classifier and they are also widely used for assigning 
functions to new genes. The results from the S. 
cerevisiae genome project [8] have illustrated both the 
potential and limitations of homology analysis as a 
means of assigning functions to new genes. One of the 
problems is its inability to assign functions for those 
yeast genes (about 30%) which have no homologs in 
the databases. 

Besides the expression and DNA sequence 
homology data, information from protein sequence and 
structure, keywords of literature abstracts in major 
databases provide opportunities for improving the 
prediction of gene functions. Intensive research has 
been conducted in this direction. To name a few 
examples, LOCkey [9] is a lexical analysis system 
which annotates protein functions based on keywords 
from SWISS-PROT. It is reported that 82% 
classification accuracy is achieved by using LOCkey 
for fewer than half of all proteins in SWISS-PROT [9]. 
King [10] presented a protein-homology-based 
function inferring method which inducts rules from 
public databases through logic programming; the rules 
are then used to enhance the weak homologue found 
by PSI-BLAST. Pavlidis et al. [5] developed a 
predicting tool that integrates expression data with 
homology data based on SVMs. 

Despite these efforts, some fundamental questions 
remain. What methods should we choose for my 
specific data? How to do the analysis if my data does 
not contain all the inputs the system need? What data 
should we collect first for the prediction? What are the 
contributions of each kind of data toward the 
prediction? How to extend the current system to hand 
new types of information? How to weight each kind of 
evidence for the prediction?  

An observation is that specific methods are 
designed primarily for certain kinds of data so that the 
above questions can not be easily answered. For 
example, SVMs prefer numerical data while logic 
programming prefers symbolic data. Integrating new 
types of data to those existing data is non-trivial and 
error-prone. There is a need to develop a general 
purpose system that could easily integrate and weight 
each source of data in order to achieve better 
prediction performance.  

These questions and observations motivate us to 
design a simple, extendable, and high performance 
system that is able to handle all kinds of data. In this 
paper, we present a hybrid weighted naive Bayesian 
Network (WNB) model which can elegantly integrate 
literally all kinds of evidence for predicting the 
functions of new genes/ORFs and proteins. It has been 
proved that Bayesian network classifiers provide 
superior performance among others [11]. The goal is 
two-fold. First, we provide a computational tool that 
can effectively predict the cellular and biological 
functions of novel genes and ORFs by integrating 
evidence from multiple sources of data. We require 
that the tool is easily extended to accommodate the 
dynamic nature of biological technology. Second, the 
tool can be used to analyze the contribution of each 
source of data toward the gene function prediction 
performance. 

The remainder of this paper is organized as follows. 
Section 2 introduced WNB and its basic computing. 
Section 3 explains the WNB system architecture and 
learning and prediction algorithms. Section 3 describes 
the statistics of multiple data sets, the preprocessing of 
data, the smoothing and probability models for each 
data source. In section 4, we demonstrate the results 
with yeast data sets. 

 
2. The WNB Computing Model  
 

A Bayesian network [12, 13] is a graph-based 
model for representing probabilistic relationships 
between random variables. The random variables, 
which may represent source data such as gene 
expression levels, are modeled as graph nodes; 
probabilistic relationships are captured by directed 
edges between the nodes and conditional probability 
distributions associated with the nodes. Formally, a 
Bayesian network for a set of random variables is a 
pair B=<G, θ>, where the first component is the 
network structure and the second component is the 
numerical parameters for conditional distributions 
associated with each node. Bayesian networks have 
been applied to solve many data mining tasks such as 
classification and diagnosis. In classification, a 
classifier, which assigns a class label to an example, is 
induced from a set of training examples with class 
labels. A simple Bayes classifier, called Naive Bayes 
(NB), is one of the most widely used classification 
models. NB has a special node C, representing class 
labels, which is the parent of all other attributes nodes 
A1, A2, …, An, where n is the number of feature 
attributes for each instances. An observation O is 
represented by a vector (a1, a2,…,an), where ai is the 



value of Ai. A NB has an umbrella structure (e.g. the 
oval nodes in Figure 1 and the edges between them), 
that implies the conditional independence assumption; 
that is, given the value of the class node, each attribute 
variable is independent with each other. This 
assumption, however, enables us to decompose the 
likelihood function and posterior probability Pr(c|a1, 
a2,…,an) so that both learning and inference can be 
performed in a timely fashion. The classification using 
NB is based on the score of posterior probability, 
which is defined as: 
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We can see that the score for each class label c is 
defined as a linear combination of the logarithm 
likelihood. The classification using NB is based on the 
above posterior probability over all possible class 
labels, where ĉ  is the predicted class label for an 
instance and m is the number of possible classes for all 
instances. 
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A natural extension of NB is the so called WNB 
(weighted Naive Bayes), as shown in Figure 1, in 
which each edge is assigned a numerical value called 
weight and the WNB is a tuple B=<G, θ, W>. The 
weight vector W=<w1,w2,…,wn> represent the 
contribution of each attribute toward the classification. 
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Figure 1. Network structure of Naive Bayesian 
Classifier 

 
We choose WNB as our computing model for four 

reasons: First, it is easy to integrate numerical, 
symbolic and textual data in a Bayesian framework 
because probability is the common language for all 
data types. Second, the inference and learning in a 
Bayesian network model is localized which means that 

the model can be easily extended to handle the 
dynamic nature of biological databases. In addition, 
features with missing value for new genes can be dealt 
with consistently and easily. Third, the weights are 
automatically determined through a training procedure 
which is equivalent to a feature selection process. This 
automatic feature selection process avoids subjective 
human selection and optimizes the prediction accuracy. 
Fourth, it has been proved that probability classifiers 
are among the most effective and efficient 
classification algorithms in many domains.  
 
3. System Architecture and Training 
Algorithms 
 

The system architecture for gene function 
prediction is shown in Figure 2. The central part of the 
system is a WBN (oval nodes with edges between 
them) which has a fixed network structure G and is 
specified through training unknown parameters θ and 
W. The probability dependency of WBN is modeled 
from the top down and the inference is from the 
bottom up using Bayesian theorem. Heterogeneous 
data sets relevant to gene functions are collected from 
public databases such as SWISS-PROT, SGD [14], 
and MIPS [15]. Then the data were filtered and 
preprocessed to generate desired statistics that are 
ready for training. The model parameter θ for each 
attribute is determined by training and is stored in the 
modeler. When a new type of data is available, we can 
easily add a wrapper without changing the existing 
components of the system. For discrete distributions 
such as the keywords, the conditional probability θ is 
trained by Maximum Likelihood methods (counting 
the relative data frequency) and then smoothed using 
Laplace correction (adding a small pseudo count to 
each frequency). The continuous probability density is 
estimated using Gaussian kernel functions. The weight 
vector W is trained by optimizing the classification 
accuracy through hill-climbing. When the system is 
fully specified after training, it can be used to infer 
functions for novel genes through the Bayesian 
inference engine that applies the equations in the 
previous section. The entire system is hybrid in the 
sense that both continuous and categorical variables 
are included. 

We use a hill-climbing algorithm to determine the 
value of W that optimizes the classification accuracy 
Acc. The classification accuracy Acc is defined as 

#
# #
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After the parameter of conditional distribution θ is 
fixed by training, Acc can be regarded as a function of 
the weight parameter W. In hill-climbing, the 
optimization of Acc is performed by a search process 
consisting of a sequence of steps. In each step, the 
weight is revised to achieve higher Acc, according to 
the rule below: 
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where N
iw  is the weight of the ith weight parameter 

at step N; δN is the step size at step N which is defined 
in proportion to the progress of Acc:  
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where η is the learning rate and 0δ is the initial step 
size. The algorithm starts with NB settings, that is, all 
weights are assigned to 1. We adjust the weight of 
each attribute separately. The algorithm will stop when 
all wi’s won’t change any longer. As the name of hill-
climbing suggests, Acc monotonously increases during 
the steps and will converge to a certain local optimum 
(possibly a global optimum). The advantage of WNB 
is that it not only outperforms NB by automatic feature 
scaling but also gives each attribute’s contribution 
toward the classification task. 
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Figure 2. System architecture of the WBN and its training and prediction components. 
 
 
4. Data Description and Attribute 
Modeling 
 

We applied the method to a data set from budding 
yeast S. cerevisiae. Yeast is an excellent model 
organism which has reasonably simple genome 
structure, well-characterized gene functions, and huge 
expression data sets. It should be noted that given a 
suitable training set, the proposed method can also be 
applied to other organisms such as human beings. 

Deriving probability model for each attribute is a non-
trivial problem. However, the general guideline is that 
the model should be able to describe the data in a 
parsimonious way. In other words, the model should 
not underfit or overfit the data. A rule of thumb is that 
the number of parameters in the model should be at 
most 1/10 of the size of the training set. 

We collected four types of data sets believed to be 
relevant to the functions of yeast genes and their 
products. The first data set derived from a collection of 



DNA microarray hybridization experiments [16]. Each 
data point represents the logarithm of the ratio of 
expression levels of a particular gene under two 
different experimental conditions. The data consists of 
a set of 79-element gene expression vectors for 2,465 
yeast genes, which were selected by Eisen et al., based 
on the availability of accurate functional annotations. 
For gene expression data, we could simply model each 
experiment as a continuous attribute. Alternatively, we 
could perform a clustering analysis to partition the 
group of genes into a set of clusters. It was reported 
[16] that the clustering may provide some insight of 
the functional class. Under clustering, the likelihood of 
an expression vector e given certain class label c can 
be calculated as  
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Pr( | ) Pr( | )
clu clu
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∑ ∑
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To simplify the computation in the last equal sign, 
we assume that given the cluster a gene belongs to, its 
actual expression pattern is no longer important to its 
functional class. This is exactly what clustering is 
designed for—providing a summarized and compact 
representation for gene expressions. In the simplest 
form, the probability of e given a cluster clu is 
calculated as   

'
1   if arg max( ( ,  ')) 

Pr( | )
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clu
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e
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where ( ,  )sim clue  is the similarity between 
expression vector e and the centroid of clu. Note that 
this probability can also be estimated using other 
estimators, such as continuous kernel functions.  

The second data set consists of a phylogenetic 
profile [17] for each of the 2,465 genes. For each yeast 
gene, a phylogenetic profile is a list of similarity 
measurements between yeast and other genomes 
indicating magnitude the gene of interest has a close 
homolog in the corresponding genome. The profiles 
employed in this paper contain, at each position, the 
negative logarithm of the lowest E-value, which was 
reported by BLAST version 2.0 [18] in a search 
against a complete genome, with negative values 
(corresponding to E-values greater than 1) truncated to 
0. Two genes in an organism can have similar 
phylogenetic profiles for one of two reasons. First, 
genes with a high level of sequence similarity will 
have, by definition, similar phylogenetic profiles. 
Second, for two genes which lack sequence similarity, 
the similarity in phylogenetic profiles reflects a similar 

pattern of occurrence of their homologs across species. 
This coupled inheritance may indicate a functional link 
between the genes, based on the hypothesis that the 
genes are always present together or always both 
absent because they cannot function independently of 
one another. This data set has been compiled in [5]. 
They used 24 complete genomes collected from the 
Institute for Genomic Research website 
(www.tigr.org/tdb) and from the Sanger Centre 
website (www.sanger.au.uk). Similar to the gene 
expression data, we use a continuous random variable 
to model each position in the phylogenetic profile. 

The third data set includes attributes regarding 
DNA sequences and gene structure such as the number 
of exons, the gene location (chromosome), the length 
of the ORF, GC contents, 6-mer entropy and codon 
usages. S. cerevisiae contains a haploid set of 16 well-
characterized chromosomes. The average GC contents 
for all the genes is 0.403 with the minimum 0.314 and 
maximum 0.580. The 6-mer entropy ranges in bits 
from 4.07 to 7.82 with an average 6.81. The average 
size of yeast genes is 1.45 kb, or 483 codons, with a 
range from 40 to 4,910 codons. Only 3.8% of the 
ORFs contain introns. We also build codon usage 
distributions for the 64 codons (61 coding and 3 stop) 
since the information could discriminate genes of 
different classes. 

From the DNA sequences and database annotations, 
we build probability models of these attributes for each 
functional class. One of the goals of this paper is to 
establish the relationship between DNA annotations 
and its protein function using machine learning 
techniques. Data on DNA sequences and gene 
annotations may not have a direct relationship with the 
gene functions, but with the automatic feature selection 
procedure, it would be desirable for integrating all 
sources of information in order to improve the gene 
function prediction accuracy. 

The fourth data set is obtained from SWISS-PROT 
which contains biochemical functional annotations —
keywords. The keyword annotation is at a very 
detailed level which provides indirect information for 
cellular information; for example, a given sequence 
has keyword cdc2 kinase but not involved in 
intracellular communication [9]. A number of text-
mining tools have been implemented that infer various 
aspects of cellular functions from annotations of 
biochemical functions [9, 20]. Annotations from 
SWISS-PROT currently form a dictionary of 890 
relevant keywords for yeast functions. Each of the 
keywords is modeled as a binary discrete random 
variable and their probability of appearance for a given 
function class is estimated by maximum likelihood 
method.  



The attributes and their models in the current 
system are summarized in Table 1. The combined data 
sets can be accessed at website 
http://bioinformatics.ist.unomaha.edu/~xdeng. 
Functional class labels were obtained from the Munich 
Information Center for Comprehensive Yeast Genome 

Database (CYGD). The experiments reported here use 
12 classes, each containing 90 genes or more for the 
purpose of reliable training and testing. The 12 classes 
have no direct inheritance relationship but there exist 
genes with multiple function annotations (See detail in 
Table 2). 

 
Table 1. Summary of the information of source data and modeling method 

Attribute Model Type # of 
Variables 

Smoothing 
Method 

Source 

Class Label 12-nary 1 Laplace MIPS FUNCAT SCHEME VERSION 2.0 
http://mips.gsf.de/genre/proj/yeast/ 

#Exon 3-nary 1 Laplace 
GC% continuous 1 Gaussian 
ORF Length continuous 1 Gaussian 
Chromosome 16-nary 1 Laplace 
6-mer Entropy continuous 1 Gaussian 
Codon Usage multinomial 

(64 states) 
1 Laplace 

SGD  
http://www.yeastgenome.org/ 
 

Microarray continuous 79 Laplace http://rana.lbl.gov/EisenData.htm 
Gene Cluster 12-nary 1 Laplace – 
Homology continious 24 Gaussian http://www.cs.columbia.edu/compbio 
Keywords binary 890 Laplace SWISS-PROT http://www.ebi.ac.uk/swissprot/ 

 
 

Table 2. Class labels and descriptions used in experiments 

Class Label Description Number of Instances 
01 METABOLISM 597 
02 ENERGY 148 
10 CELL CYCLE AND DNA PROCESSING 359 
11 TRANSCRIPTION 495 
12 PROTEIN SYNTHESIS 267 
14 PROTEIN FATE  411 
20 CELLULAR TRANSPORT 409 
32 CELL RESCUE, DEFENSE AND VIRULENCE 134 
34 INTERACTION WITH THE CELLULAR ENVIRONMENT 194 
40 CELL FATE 95 
42 BIOGENESIS OF CELLULAR COMPONENTS 231 
43 CELL TYPE DIFFERENTIATION 175 
Total 3515 (2166 unique genes) 

 

5. Experimental Results  
 

Using the proposed WNB system, we performed 
computational experiments for each configuration of 
source data. A configuration is a binary string 
representing whether a source information is available 

or not. The four digits represent keywords, homology, 
expression, sequence respectively (e.g., 0110 means 
homology and expression are available while 
keywords and sequence annotations are not). For each 
configuration, we ran WNB with 10-fold cross-
validation six times. To reduce the risk of overfitting, 



we use four weights, one for each source of data, not 
one for each attribute. Negative weights are allowed in 
case that certain attributes may contribute negatively 
toward the classification. The mean and standard 
deviation of final weights and accuracy are 
summarized in Table 3. 

To test for the probability of our predictions 
occurring by chance, we performed a binomial test for 

the random classifier with probability of hit 
'p = ⋅P P  where P is a row vector with each 

element representing the prior probability of a class. 
Both normal approximation and Monte-Carlo 
simulation were performed for the test and we 
conclude that all of the accuracy results in Table 3 are 
statistically highly significant (<1e-10).  

  

Table 3. Results of classification accuracy for all possible input data configurations 

Source Data w1  
Keywords 

w2   
Homology 

w3   
Expression 

w4  
Sequence 

Accuracy (%) 

0001 − − − 1.00 37.01±0.36 
0010 − − 1.00 − 32.95 ±0.66 
0011 − − 0.77±0.08 1.12±0.09 43.26±0.35 
0100 − 1.00 − − 24.77±0.46 
0101 − 0.87±0.17 − 1.12±0.15 39.03±0.34 
0110 − 1.00±0.13 1.04±0.06 − 37.56±0.25 
0111 − 1.00±0.14 1.08±0.10 1.01±0.03 44.17±0.26 
1000 1.00 − − − 80.59±0.13 
1001 1.87±0.28 − − 0.09±0.02 80.65±0.25 
1010 1.89±0.24 − 0.06±0.04 − 80.66±0.28 
1011 2.28±0.31 − 0.00±0.07 0.06±0.05 80.73±0.42 
1100 1.81±0.13 0.05±0.11 − − 80.59±0.39 
1101 2.11±0.18 0.03±0.04 − 0.04±0.02 80.96±0.20 
1110 2.08±0.30 0.03±0.03 0.13±0.03 − 80.61±0.20 
1111 2.30±0.20 0.02±0.06 0.13±0.02 0.03±0.05 80.99±0.18 

 
 
One important observation from Table 3 is that if 

the keywords are used as one of attributes in the 
WNB system, they dominate the prediction. With 
keywords present, all configurations reach 
classification accuracy around 80% which is 
significantly greater than configurations without 
keywords; while the contributions of other attributes 
are very low if not zero, evidenced by the weights 
given in the Table 3. We also performed paired two-
tailed t-tests with 5% significance level which show 
that there are no significant differences in accuracy 
between all pairs of configurations when keywords 
are present in both.  

When the keywords are absent, the accuracy 
ranges from 24% to 44%. The results are quite 
competitive compared with methods designed 
specifically for corresponding data sets e.g. SVM for 
expression [5], LOCkey for SWISS-PROT keywords 
[9]. We performed paired two-tailed t-tests with 5% 

significance level and have the following 
conclusions: 

H < E < S ≈  HE < HS < ES < HES << K* 

K: Keyword, H: Homology, E: Expression, and S: 
Sequence. For example, HS means that homology 
and sequence information are present while keyword 
and expression information are absent. This result is 
rather important since it empirically proved our 
hypotheses that using the information of multiple 
sources is able to improve prediction accuracy. The 
missing functional links may be complemented 
evidence by other sources of data. The WNB users 
are encouraged to include as many data sources as 
available, because our system has a hill-climbing 
component that is able to reach high accuracy by 
strengthening the signal data sources and suppressing 
the noise data sources. This result also provides hints 
on the priority of choosing data sources when 



predicting gene functions. For example, it is 
interesting that we find the sequence annotations (GC 
contents, codon usage, etc.) provide more direct 
information of gene functions than the expression 
data do. We also find that when Expression is 
replaced by Clustering, the accuracy is slightly (but 
statistically significant) lower.   

Figure 3 shows the dynamics of the weights and 
accuracy during one run with configuration 1111. As 
we discussed, keyword provides a strong signal about 
the functions and it dominates all other attributes and 
forces them to almost zero during hill-climbing. The 

initial weights are all 1’s which represent the setting 
of standard NB. It is clear that the WNB (Accuracy 
0.80) significantly outperforms NB (Accuracy 0.58). 

The confusion matrix of the multi-classification is 
shown in Table 4. We removed all genes with 
multiple class labels and this left 1223 uniquely 
labeled genes. A total of 983 hits were determined 
using WNB with initial configuration 1111. From 
this table, we can observe that all classes with 
reasonable sample size (>100) achieved good 
prediction accuracy (>70%).  
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Figure 3. The dynamics of weights and accuracy during the steps in hill climbing 

Table 4. Confusion Matrix of cases with unique function labels 

      Pred 
True 01 02 10 11 12 14 20 32 34 40 42 43 Sub 

01 215 8 2 3 2 14 9 0 1 2 0 1 257 
02 6 16 0 0 0 1 1 0 0 0 1 0 25 
10 4 0 108 13 3 3 7 0 0 0 2 2 142 
11 5 0 8 227 2 3 4 0 0 0 2 0 251 
12 1 0 0 5 163 1 2 0 0 0 0 0 172 
14 3 0 8 4 3 94 17 1 0 0 0 0 130 
20 4 0 1 3 0 5 149 0 0 6 0 1 169 
32 6 0 6 3 4 5 3 4 0 1 0 0 32 
34 1 1 1 2 0 3 5 0 3 0 0 0 16 
40 0 0 0 0 0 0 0 0 0 0 0 0 0 
42 5 0 2 5 0 1 3 0 0 1 2 1 20 
43 0 0 2 1 0 2 1 0 0 1 0 2 9 
Sub 250 25 138 266 177 132 201 5 4 11 7 7 983/1223 



In order to study the prediction performance of 
individual class, we cast the 12-class classification 
problem as 12 separate one-versus-all (OVA) binary 
comparisons. We performed Receiver Operating 
Characteristic (ROC) analysis for each of the 12 binary 
classifiers. ROC analysis [19] is a ranking-based 
method that compares the classifiers’ performance 
across the entire range of class distributions and error 
costs. The ROC curves and their corresponding Area 
Under ROC (AUC) for configuration 1111 are 
illustrated in Figure 4. Each of these 12 binary OVA 
comparisons has its own AUC, which can be used as a 

metric of how well the classifier separates one class 
from all the others. Each subplot shows the binary 
classification performance for each class. The 
comparison is between each class and its complement 
class which include all other classes. Figure 4 
demonstrates that the AUCs are relatively high in all 
12 classes, ranging from 0.673(CELL RESCUE, 
DEFENSE AND VIRULENCE) to 0.967 (PROTEIN 
SYNTHESIS). These results suggest a relatively high 
confidence level when using the WNB system for gene 
functional prediction. 

 
 

True positive rate=sensitivity, false positive rate=1-specificity 

Figure 4. Roc curves of 12 one-versus-all comparisons. Each subplot represents the binary 
classification performance of each class compared with its complement class. 

 
 

 



5. Conclusions 
 

We present a Bayesian framework for the 
prediction of functional classes of novel genes based 
on heterogeneous sources of data. There are two main 
contributions in this study. First, we provide a system 
that is able to predict functions of novel genes, based 
on virtually all sorts of information that is available. 
Second, the system can be used to analyze how the 
combination of heterogeneous types of data affects the 
classification results through weight training process. 
The system has many advantages including capability 
of handling new data, missing data, and automatic 
feature selection. We have applied our WNB system to 
the heterogeneous data sets including gene 
annotations, gene expressions (clustering results), 
keyword annotations and sequence homology from 
public databases of budding yeast S. Cerevisiae. We 
conclude that the SWISS-PROT keywords is the 
dominant information source (~80% accuracy) for 
determining gene functions among other data sources, 
such as expression, homology and sequence statistical 
features, each achieved less than 40% accuracy. 
Moreover, the use of multiple data sets generally 
improved prediction accuracy. The performance for 
single data type is competitive with other approaches 
such as SVM and LOCkey, which are designed for 
specific training data sets. We also compiled a 
heterogeneous data set for future development in this 
field. We are currently trying to integrate DNA motif 
patterns and protein structure information in the system 
to see how the prediction performance is affected. 
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